Инд. авторы: Shokin Yu.I., Cherny S.G., Lapin V.N., Esipov D.V., Kuranakov D.S., Astrakova A.S.
Заглавие: Methods for optimal control of hydraulic fracturing process
Библ. ссылка: Shokin Yu.I., Cherny S.G., Lapin V.N., Esipov D.V., Kuranakov D.S., Astrakova A.S. Methods for optimal control of hydraulic fracturing process // CEUR Workshop Proceedings. - 2017. - Vol.1839. - P.423-444. - ISSN 1613-0073.
Внешние системы: РИНЦ: 31021758; SCOPUS: 2-s2.0-85020501081;
Реферат: eng: The problem of optimal control of the hydraulic fracturing process is set as the optimization problem of finding the input parameters vector for the fracture propagation model that provides the minimization of objective functions. Various objective functions based on the output data of the fracture propagation model are considered. The problem is formulated within the framework of multivariate and multiobjective optimization method, which is based on the combined features of fracture propagation model and Genetic Algorithm. Plane radial model of fracture propagation caused by Herschel-Bulkley fluid injection is used to establish relationships between input parameters and fracture growth. The potential of the proposed method for control of hydraulic fracturing process is demonstrated by application to hydrocarbon reservoirs of shallow bedding. Results show that the proposed methods for optimal control of hydraulic fracturing process play the important role in maximization of the volume of mined hydrocarbon with significant decrease of the costs for hydraulic fracturing execution.
Ключевые слова: Process control; Optimization problems; Optimal controls; Objective functions; Hydrocarbon reservoir; Hydraulic fracturing process; Herschel-Bulkley fluids; Fracture propagation; Combined features; Optimization; Multiobjective optimization; Hydrocarbons; Hydraulic fracturing; Genetic algorithms; Fracture;
Издано: 2017
Физ. характеристика: с.423-444
Конференция: Название: Международная конференция «Математические и информационные технологии, MIT-2016»
Аббревиатура: MIT-2016
Город: Врнячка Баня, Будва
Страна: Сербия, Черногория
Даты проведения: 2016-08-28 - 2016-09-05
Ссылка: http://conf.nsc.ru/MIT-2016
Цитирование: 1. M.M. Rahman, M.K. Rahman, and S.S. Rahman. An integrated model for multiobjective design optimization of hydraulic fracturing. J. Petroleum Science and Engineering, 31(1):41-62, OCT 2001. 2. M.M. Rahman, M.K. Rahman, and S.S. Rahman. Multivariate fracture treatment optimization for enhanced gas production from tight reservoirs. In SPE Gas Technology Symposium, 2002. SPE-75702-MS. 3. J. Will. Optimizing of hydraulic fracturing procedure using numerical simulation. In Weimar Optimization and Stochastic Days 2010, pages 1-18, OCT 2010. 4. R. Masoomi, I Bassey, and S.V. Dolgow. Optimization of the effective parameters on hydraulic fracturing designing in an iranian sand stone reservoir. 5. M. Chen, Y. Sun, P. Fu, C.R. Carrigan, Z. Lu, C.H. Tong, and T.A. Buscheck. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks. Computers & Geosciences, 58:69-79, aug 2013. 6. J. Geertsma and R.A. Haafkens. Comparison of the theories for predicting width and extent of vertical hydraulically induced fractures. J. Energy Res. Tech., 101(1):8-19, 1979. 7. T.K. Perkins and L.R. Kern. Widths of hydraulic fractures. J. Petroleum Technology, 13(9):937-949, 1961. 8. H. Abe, T. Mura, and L.M. Keer. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks. J. Geophysical Research, 81(29):5335-5340, 1976. 9. W.H. Herschel and R. Bulkley. Konsistenzmessungen von gummi-benzollosungen. Kolloid-Zeitschrift, 39(4):291-300, AUG 1926. 10. S.H. Maron and P.E. Pierce. Application of ree-eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 11(1):80-95, FEB 1956. 11. S. Mueller, E.W. Llewellin, and H.M. Mader. The rheology of suspensions of solid particles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116):1201-1228, DEC 2009. 12. M. Economides, R. Oligney, and P. Valko. Unified Fracture Design: Bridging the Gap Between Theory and Practice. Orsa Press, Alvin, Texas, 2002. 13. L.P. Dake. Fundamentals of reservoir engineering. Elsevier, Amsterdam, Boston, 1978. 14. M. Economides. Petroleum production systems. PTR Prentice Hall, Englewood Cliffs, N.J., 1994. 15. P. Valko and M.J. Economides. Fluid leakoff delineation in high-permeability fracturing. In SPE Production Operations Symposium, 1997. SPE-37403-MS. 16. A.E. Lyutov, D.V. Chirkov, V.A. Skorospelov, P.A. Turuk, and S.G. Cherny. Coupled multipoint shape optimization of runner and draft tube of hydraulic turbines. Journal of Fluids Engineering, 137(11):11, JUN 2015.