Инд. авторы: | Amelina E.V., Golushko S.K., Yurchenko A.V. |
Заглавие: | Analysis and design of hybrid pressure vessels |
Библ. ссылка: | Amelina E.V., Golushko S.K., Yurchenko A.V. Analysis and design of hybrid pressure vessels // CEUR Workshop Proceedings. - 2017. - Vol.1839. - P.244-257. - ISSN 1613-0073. |
Внешние системы: | РИНЦ: 31039808; SCOPUS: 2-s2.0-85020491800; |
Реферат: | eng: The paper presents a computational technology for optimization of composite overwrapped pressure vessels (COPV). Mathematical modeling and numerical optimization were applied to design COPV. The mathematical models were built using different shell theories and structural models of composites. The stress-strain state of the vessels was determined and analyzed based on three mathematical models. Several solutions of COPV optimization problem based on different problem statements were obtained. They were analyzed and verified by substituting of the estimated design parameters in a direct problem of stress-strain state determination. The study demonstrated that using of non-constant design parameters, such as the thickness, the winding angle and the curvature radius of the composite shell gave the possibility for additional reduction of COPV mass, while keeping its strength. In addition, acceptability and convenience of using simpler mathematical models for numerical solving the optimization problems were demonstrated. |
Ключевые слова: | Computational optimization; COPV; Mathematical modeling; Shell theory; Structural model of composite material; Computation theory; Mathematical models; Pressure vessels; Structural modeling; Shell theory; Optimization problems; Numerical optimizations; COPV; Computational technology; Computational optimization; Composite overwrapped pressure vessels; Problem solving; Optimization; |
Издано: | 2017 |
Физ. характеристика: | с.244-257 |
Конференция: | Название: Международная конференция «Математические и информационные технологии, MIT-2016» Аббревиатура: MIT-2016 Город: Врнячка Баня, Будва Страна: Сербия, Черногория Даты проведения: 2016-08-28 - 2016-09-05 Ссылка: http://conf.nsc.ru/MIT-2016 |
Цитирование: | 1. Beeson, H.D., Davis, D.D., Ross, W.L., Tapphorn, R.M.: Composite Overwrapped Pressure Vessels. NASA/TP-2002-210769 (2002). 2. Thesken, J.C., Murthy, P.L.N., Phoenix, S.L., Greene, N., Palko, J.L., Eldridge, J., Sutter, J., Saulsberry, R., Beeson, H.: A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests. NASA/TM-2009-215684 (2009). 3. Stadler, W., Krishnan, V.: Natural structural shapes for shells of revolution in the membrane theory of shells. Structural Optimization. 1, 19-27 (1989). 4. Banichuk, N.V.: Optimization of axisymmetric membrane shells. Applied Mathematics and Mechanics. V. 1, iss. 4. 578-586 (2007) (in Russian). 5. Obraztsov, I.F., Vasiliev, V.V., Bunakov, V.A.: Optimum reinforcing of composite shells of rotation. Mashinostroenie, Moscow (1977) (in Russian). 6. Vasiliev, V.V., Krikanov, A.A., Razin, A.F.: New generation of filament-wound composite pressure vessels for commercial applications. Composite structures. 62, 449- 459 (2003). 7. Abbas Vafaeesefat: Optimization of composite pressure vessels with metal liner by adaptive response surface method. Journal of Mechanical Science and Technology. 25 (11), 2811-2816 (2011). 8. Manolis Papadrakakis, Nikos D. Lagaros: Soft computing methodologies for structural optimization. Applied Soft Computing. Vol. 3, iss. 3, 283- 300 (2003). 9. Cho-Chung Liang, Hung-Wen Chen, Cheng-Huan Wang: Optimum design of dome contour for filament-wound composite pressure vessels based on a shape factor. Composite structures. 58, 469-482 (2002). 10. Cheol-Ung Kim, Ji-Ho Kang, Chang-Sun Hong, Chun-Gon Kim: Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Composite structures. 67, 443-452 (2005). 11. Lei Zu, Sotiris Koussios, Adriaan Beukers: Shape optimization of filament wound articulated pressure vessels based on non-geodesic trajectories. Composite structures. 92, 339-346 (2010). 12. Hisao Fukunaga, Masuji Uemura: Optimum design of helically wound composite pressure vessels. Composite structures. 1, 31-49 (1983). 13. Grigorenko, Ya.M., Vasilenko, A.T.: Static problem of anisotropic inhomogeneous shells. Nauka, Moscow (1992) (in Russain). 14. Andreev, A.N., Nemirovskii, Yu.V.: Multilayer anisotropic shells and plates: bending, stability, oscillation. Nauka, Novosibirsk (2001) (in Russain). 15. Novozhilov, V.V.: Theory of thin shells. Sudpromgiz, Leningrad (1951) (in Russian). 16. Golushko, S.K.: Direct and inverse problems in the mechanics of composite plates and shells. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Vol. 88, 205-227. 17. Golushko, K.S., Golushko, S.K., Yurchenko, A.V:. On modeling of mechanical properties of fibrous composites. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Vol. 115, 107-120. Springer (2011). 18. Ascher U., Christiansen J., Russel R.D.: Collocation software for boundary value ODEs. ACM. Trans. on Math. Software. Vol. 7, N. 2, 209-222 (1981). 19. Golushko, S.K., Yurchenko, A.V.: Solution of boundary value problems in mechanics of composite plates and shells. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 25, N. 1, 27-55 (2010). 20. Golushko, S.K., Nemirovskii, Yu.V.: Direct and inverse problems of mechanics of composite plates and shells of revolutions. FIZMATLIT, Moscow (2008) (in Russain). 21. Bertsekas, D.: Constrained optimization and Lagrange multiplier method. Radio and cvyas, Moscow (1987) (in Russain). 22. Evtushenko, Yu.G.: Methods of solution of extremum problems and their application in systems of optimization. Nauka, Moscow (1982) (in Russain). 23. Gornov, A.Yu.: Computational technologies for optimal control solution. Nauka, Novosibirsk (2009) (in Russain). 24. Lepikhin, A.M., Moskvichev, V.V., Chernyayev, A.P., Pokhabov, Yu. P., Khalimanovich, V.I.: Experimental evaluation of strength and tightness of metal- composite high-pressure vessels. Deformation and rupture of materials. 6, 30-36 (2015) (in Russain). |