Инд. авторы: Lanshakov D.A., Drozd U.S., Zapara T.A., Dygalo N.N.
Заглавие: Transfer of optogenetic vectors into the brain of neonatal animals to study neuron functions during subsequent periods of development
Библ. ссылка: Lanshakov D.A., Drozd U.S., Zapara T.A., Dygalo N.N. Transfer of optogenetic vectors into the brain of neonatal animals to study neuron functions during subsequent periods of development // Russian Journal of Genetics: Applied Research. - 2017. - Vol.7. - Iss. 3. - P.266-272. - ISSN 2079-0597. - EISSN 2079-0600.
Внешние системы: DOI: 10.1134/S2079059717030078; РИНЦ: 31038559; SCOPUS: 2-s2.0-85018944563;
Реферат: eng: Optogenetics, that is, the control of cell activity using photosensitive ion channels, opsins, with the light of a specific wavelength, is increasingly being used to study the activities and functions of neurons. The expression of opsins in the cell membrane, making the cell sensitive to light, is achieved by means of the viral vectors, mainly constructed using lentiviruses or adeno-associated viruses (AAVs), with the inserted nucleotide sequences encoding the photochannel proteins. The specific promoter for the target cell type added to the transgene expression cassette provides opsin production only in these target cells. The aim of this work was to briefly describe the optogenetic method, as well as to analyze the possibility to use administration of viral vectors into the brain of neonatal animals to study the function of neurons in vivo during subsequent periods of development. In this analysis, 3-day-old rat pups are intracerebroventricularly injected with the optovector (pAAV-CAMKIIa-ChR2h134-YFP) coding for a neuron-activating photochannel and a marker, yellow fluorescent protein, under the CAMKIIa promoter, specific for glutamatergic neurons. The peak expression of the transferred gene is usually achieved 3–5 weeks after the vector transfer, which is also observed in our experiments. Stimulation of the hippocampal neurons with blue light in the 20-day-old animals injected with the optovector on 3rd day of their lives increases the discharge activity of these neurons, as well as the expression of c-Fos protein, a well-known marker of neuronal activation. The same experiments with older animals (60 days after the neonatal optochannel gene transfer) demonstrate neither any noticeable expression nor photoactivation of the target hippocampal neurons. Thus, the neonatal administration of a viral vector carrying an optochannel gene is suitable for the study of brain neurons in juvenile rats but requires additional assessment of the corresponding gene expression during subsequent periods of development. © 2017, Pleiades Publishing, Ltd.
Ключевые слова: photosensitive proteins; optogenetics; ontogeny; expression; adeno-associated viruses; neuronal activity;
Издано: 2017
Физ. характеристика: с.266-272
Цитирование: 1. Ambrosi, C.M., Boyle, P.M., Chen, K., Trayanova, N.A., and Entcheva, E., Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability, Sci. Rep., 2015, vol. 5, no. 17350. doi 10.1038/srep17350 2. Arenkiel, B.R., Peca, J., Davison, I.G., Feliciano, C., Deisseroth, K., Augustine, G.J., Ehlers, M.D., and Feng, G., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 2007, vol. 54, no. 2, pp. 205–218. doi 10.1016/j.neuron.2007.03.005 3. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K., Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 2005, vol. 8, no. 9, pp. 1263–1268. doi 10.1038/nn1525 4. Buzsaki, G., Stark, E., Berenyi, A., Khodagholy, D., Kipke, D.R., Yoon, E., and Wise, K.D., Tools for probing local circuits: High-density silicon probes combined with optogenetics, Neuron, 2015, vol. 86, no. 1, pp. 92–105. doi 10.1016/j.neuron.2015.01.028 5. Davis, B.J., Marks, D.L., Ralston, T.S., Carney, P.S., and Boppart, S.A., Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy, Sensors (Basel), 2008, vol. 8, no. 6, pp. 3903–3931. doi 10.3390/s8063903 6. Deisseroth, K., Optogenetics, Nat. Methods, 2011, vol. 8, no. 1, pp. 26–29. doi 10.1038/nmeth.f.324 7. Diester, I., Kaufman, M.T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramakrishnan, C., Deisseroth, K., and Shenoy, K.V., An optogenetic toolbox designed for primates, Nat. Neurosci., 2011, vol. 14, no. 3, pp. 387–397. doi 10.1038/nn.2749 8. Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T.W., Helmchen, F., Denk, W., Brecht, M., and Osten, P., Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 52, pp. 18206–18211. doi 10.1073/pnas.0407976101 9. Dygalo, N.N., Kalinina, T.S., and Shishkina, G.T., Neonatal programming of rat behavior by downregulation of alpha2a-adrenoreceptor gene expression in the brain, Ann. N.Y. Acad. Sci., 2008, vol. 1148, pp. 409–414. doi 10.1196/annals.1410.063 10. Dygalo, N.N., The optogenetic approach to the study of central mechanisms of behavior regulation, Usp. Fiziol. Nauk, 2015, vol. 46, no. 2, pp. 17–23. 11. Glock, C., Nagpal, J., and Gottschalk, A., Microbial rhodopsin optogenetic tools: Application for analyses of synaptic transmission and of neuronal network activity in behavior, Meth. Mol. Biol., 2015, vol. 1327, pp. 87–103. doi 10.1007/978-1-4939-2842-2_8 12. Gompf, H.S., Budygin, E.A., Fuller, P.M., and Bass, C.E., Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals, Front. Behav. Neurosci., 2015, vol. 9, p. 152. doi 10.3389/fnbeh.2015.00152 13. Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., and Deisseroth, K., Targeting and readout strategies for fast optical neural control in vitro and in vivo, J. Neurosci., 2007, vol. 27, no. 52, pp. 14231–14238. doi 10.1523/JNEUROSCI.3578-07.2007 14. Guenthner, C.J., Miyamichi, K., Yang, H.H., Heller, H.C., and Luo, L., Permanent genetic access to transiently active neurons via TRAP: Targeted recombination in active populations, Neuron, 2013, vol. 78, no. 5, pp. 773–784. doi 10.1016/j.neuron.2013.03.025 15. Hioki, H., Kameda, H., Nakamura, H., Okunomiya, T., Ohira, K., Nakamura, K., Kuroda, M., Furuta, T., and Kaneko, T., Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters, Gene Ther., 2007, vol. 14, no. 11, pp. 872–882. doi 10.1038/sj.gt.3302924 16. Husson, S.J., Liewald, J.F., Schultheis, C., Stirman, J.N., Lu, H., and Gottschalk, A., Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans, PloS One, 2012, vol. 7, no. 7. doi 10.1371/journal.pone.0040937 17. Kim, J.Y., Ash, R.T., Ceballos-Diaz, C., Levites, Y., Golde, T.E., Smirnakis, S.M., and Jankowsky, J.L., Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo, Eur. J. Neurosci., 2013, vol. 37, no. 8, pp. 1203–1220. 18. Lanshakov, D.A., Sukhareva, E.V., Kalinina, T.S., and Dygalo, N.N., Dexamethasone-induced acute excitotoxic cell death in the developing brain, Neurobiol. Dis., 2016, vol. 91, pp. 1–9. doi 10.1016/j.nbd.2016.02.009 19. Lin, J.Y., A user’s guide to channelrhodopsin variants: Features, limitations and future developments, Exp. Physiol., 2011, vol. 96, no. 1, pp. 19–25. doi 10.1113/expphysiol.2009.051961 20. Liu, X., Ramirez, S., Pang, P.T., Puryear, C.B., Govindarajan, A., Deisseroth, K., and Tonegawa, S., Optogenetic stimulation of a hippocampal engram activates fear memory recall, Nature, 2012, vol. 484, no. 7394, pp. 381–385. doi 10.1038/nature11028 21. Pisanello, F., Sileo, L., Oldenburg, I.A., Pisanello, M., Martiradonna, L., Assad, J.A., Sabatini, B.L., and De Vittorio, M., Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics, Neuron, 2014, vol. 82, no. 6, pp. 1245–1254. doi 10.1016/j.neuron.2014.04.041 22. Samaranch, L., San Sebastian, W., Kells, A.P., Salegio, E.A., Heller, G., Bringas, J.R., Pivirotto, P., Dearmond, S., Forsayeth, J., and Bankiewicz, K.S., AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction, Mol. Ther, 2014, vol. 22, no. 2, pp. 329–337. doi 10.1038/mt.2013.266 23. Shishkina, G.T., Kalinina, T.S., and Dygalo, N.N., Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood, Neuroscience, 2004, vol. 129, no. 3, pp. 521–528. doi 10.1016/j.neuroscience.2004.08.015 24. Shishkina, G.T., Kalinina, T.S., Sournina, N.Y., and Dygalo, N.N., Effects of antisense to the (alpha)2A-adrenoceptors administered into the region of the locus ceruleus on behaviors in plus-maze and sexual behavior tests in sham-operated and castrated male rats, J. Neurosci., 2001, vol. 21, no. 2, pp. 726–731. 25. Stuber, G.D., Sparta, D.R., Stamatakis, A.M., van Leeuwen, W.A., Hardjoprajitno, J.E., Cho, S., Tye, K.M., Kempadoo, K.A., Zhang, F., Deisseroth, K., and Bonci, A., Excitatory transmission from the amygdale to nucleus accumbens facilitates reward seeking, Nature, 2011, vol. 475, no. 7356, pp. 377–380. 26. Tan, E.L., Pereles, B.D., Horton, B., Shao, R., Zourob, M., and Ong, K.G., Implantable biosensors for real-time strain and pressure monitoring, Sensors (Basel), 2008, vol. 8, no. 10, pp. 6396–6406. doi 10.3390/s8106396 27. Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W.C., Feng, G., and Augustine, G.J., High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 19, pp. 8143–8148. doi 10.1073/pnas.0700384104 28. Warden, M.R., Selimbeyoglu, A., Mirzabekov, J.J., Lo, M., Thompson, K.R., Kim, S.Y., Adhikari, A., Tye, K.M., Frank, L.M., and Deisseroth, K., A prefrontal cortexbrainstem neuronal projection that controls response to behavioural challenge, Nature, 2012, vol. 492, no. 7429, pp. 428–432. doi 10.1038/nature11617 29. Watakabe, A., Ohtsuka, M., Kinoshita, M., Takaji, M., Isa, K., Mizukami, H., Ozawa, K., Isa, T., and Yamamori, T., Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex, Neurosci. Res., 2015, vol. 93, pp. 144–157. doi 10.1016/j.neures.2014.09.002 30. Zapara, G.A., Ratushnyak, A.S., and Shtark, M.B., Local changes in transmembrane ionic currents during plastic reorganizations of electrogenesis of isolated neurons of the pond snail, Neurosci. Behav. Physiol., 1989, vol. 19, no. 3, pp. 224–229. 31. Zhang, F., Gradinaru, V., Adamantidis, A.R., Durand, R., Airan, R.D., de Lecea, L., and Deisseroth, K., Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures, Nat. Protoc., 2010, vol. 5, no. 3, pp. 439–456. doi 10.1038/nprot.2009.226 32. Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., Gottschalk, A., and Deisseroth, K., Multimodal fast optical interrogation of neural circuitry, Nature, 2007, vol. 446, no. 7136, pp. 633–639. doi 10.1038/nature05744 33. Zhao, S., Ting, J.T., Atallah, H.E., Qiu, L., Tan, J., Gloss, B., Augustine, G.J., Deisseroth, K., Luo, M., Graybiel, A.M., and Feng, G., Cell typespecific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function, Nat. Meth., 2011, vol. 8, no. 9, pp. 745–752.