Инд. авторы: Wacławczyk M., Grebenev V.N., Oberlack M.
Заглавие: Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow
Библ. ссылка: Wacławczyk M., Grebenev V.N., Oberlack M. Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow // Journal of Physics A: Mathematical and Theoretical. - 2017. - Vol.50. - Iss. 17. - Art.175501. - ISSN 1751-8113. - EISSN 1751-8121.
Внешние системы: DOI: 10.1088/1751-8121/aa62f4; РИНЦ: 29482416; SCOPUS: 2-s2.0-85016710522; WoS: 000401140200001;
Реферат: eng: The problem of turbulence statistics described by the Lundgren-Monin-Novikov (LMN) hierarchy of integro-differential equations is studied in terms of its group properties. For this we perform a Lie group analysis of a truncated LMN chain which presents the first two equations in an infinite set of integro-differential equations for the multi-point probability density functions (pdf's) of velocity. A complete set of point transformations is derived for the one-point pdf's and the independent variables: sample space of velocity, space and time. For this purpose we use a direct method based on the canonical Lie-Bäcklund operator. Due to the one-way coupling of correlation equations, the present results are complete in the sense that no additional symmetries exist for the first leading equation, even if the full infinite hierarchy is considered. © 2017 IOP Publishing Ltd.
Ключевые слова: probability density functions; Lie group analysis; integro-differential equations; Lundgren-Monin-Novikov hierarchy; turbulence;
Издано: 2017
Физ. характеристика: 175501
Цитирование: 1. Lundgren T S 1967 Distribution functions in the statistical theory of turbulence Phys. Fluids 10 969-75 2. Monin A S 1967 Equations of turbulent motion Prikl. Mat. Mekh 31 1057-68 3. Novikov E A 1968 Kinetic equations for a vortex field Sov. Phys. - Dokl. 12 1006-8 4. Taranov V B 1979 Continuous symmetries of longitudinal motions of a collisionless plasma, invariant solutions and conservation laws Preprint ITF-78-161 Kiev (in Russian) 5. Grigoriev Y N, Ibragimov N H, Kovalev V F and Meleshko S V 2010 Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics (Dordrecht: Springer) 6. Ibragimov N H, Kovalev V F and Pustovalov V V 2002 Symmetries of integro-differential equations: a survey of methods illustrated by the Benny equations Nonlinear Dyn. 28 135-53 7. Zawistowski Z J 2001 Symmetries of integro-differential equations Rep. Math. Phys. 48 269-75 8. Roberts D 1985 The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations J. Plasma Phys. 33 219-36 9. Özer T 2005 Symmetry group analysis of Benney system and an application for shallow-water equations Mech. Res. Commun. 32 241-54 10. Grigoryev Yu N and Meleshko S V 1990 Group theoretical analysis of the kinetic Boltzmann equation and its models Arch. Mech. 42 693-701 11. Oberlack M and Rosteck A 2010 New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws Discrete Contin. Dyn. Syst., Ser. S 3 451-71 12. Wacławczyk M, Staffolani N, Oberlack M, Rosteck A, Wilczek M and Friedrich R 2014 Statistical symmetries of the Lundgren-Monin-Novikov hierarchy Phys. Rev. E 90 013022 13. Falkovich G 2007 Conformal invariance in hydrodynamic turbulence Russ. Math. Surv. 63 497-510 14. Falkovich G 2009 Symmetries of the turbulent state J. Phys. A: Math. Theor. 42 123001-19 15. Hosokawa I 2006 Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence Phys. Rev. E 73 067301 16. Ibragimov N H 1994 CRC Handbook of Lie Group Analysis of Differential Equations (Symmetries, Exact Solutions and Conservation Laws vol 1) (Boca Raton, FL: CRC Press) 17. Kovalev V F, Krivenko S V and Pustovalov V V 1992 Group symmetry of the kinetic equations of the colisionless plasma JETP Lett. 55 256-9 18. Fushchych W and Boyko V 1997 Continuity equation in nonlinear quantum mechanics and the Galilei principle J. Nonlinear Math. Phys. 4 124-8 19. Boyko V 2000 On Galilei invariance of continuity equation Proc. Inst. Math. NAS Ukraine 30 99-102 20. Grigoryev Y N, Meleshko S V and Sattayatham P 1999 Classification of invariant solutions of the Boltzmann equation J. Phys. A: Math. Gen. 32 L337-43 21. Bernard D, Boffetta G, Celani A and Falkovich G 2007 Inverse turbulent cascades and conformally invariant curves Phys. Rev. Lett. 98 024501 22. Gaeta G and Quintero N R 1999 Lie-point symmetries and stochastic differential equations J. Phys. A: Math. Gen. 32 8485-505 23. Ünal G 2003 Symmetries of Itô and Stratonovich dynamical systems and their conserved quantities Nonlinear Dyn. 32 417-26 24. Kozlov R 2012 On symmetries of stochastic differential equations Commun. Nonlinear Sci. Numer. Simul. 17 4947-51 25. Kozlov R 2013 On symmetries of the Fokker-Planck equation J. Eng. Math. 82 39-57 26. Friedrich R, Daitche A, Kamps O, Lülff J, Vo M and Wilczek M 2012 The Lundgren-Monin-Novikov hierarchy: kinetic equations for turbulence C. R. Phys. 13 929 27. Rosteck A 2013 Scaling laws in turbulence - a theoretical approach using Lie-point symmetries Dissertation TU, Darmstadt 28. Avsarkisov V, Hoyas S, Oberlack M and García-Galache J P 2014 Turbulent plane Couette flow at moderately high Reynolds number J. Fluid Mech. 751 R1 29. Nariboli G A 1977 Group-invariant solutions of the Fokker-Planck equation Stoch. Process. Appl. 5 157-71 30. Bobylev A V, Caraffini G L and Spiga G 1996 On group invariant solutions of the Boltzmann equation J. Math. Phys. 37 2787-95 31. Wilczek M, Daitche A and Friedrich R 2011 On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity J. Fluid Mech. 676 191-217 32. Kailasnath P, Sreenivasan K R and Stolovitzky G 1992 Probability density of velocity increments in turbulent flows Phys. Rev. Lett. 68 2766-9 33. Warhaft Z 1991 Probability distribution of a passive scalar in grid-generated turbulence Phys. Rev. Lett. 67 3503-6