Цитирование: | 1. Lundgren T S 1967 Distribution functions in the statistical theory of turbulence Phys. Fluids 10 969-75
2. Monin A S 1967 Equations of turbulent motion Prikl. Mat. Mekh 31 1057-68
3. Novikov E A 1968 Kinetic equations for a vortex field Sov. Phys. - Dokl. 12 1006-8
4. Taranov V B 1979 Continuous symmetries of longitudinal motions of a collisionless plasma, invariant solutions and conservation laws Preprint ITF-78-161 Kiev (in Russian)
5. Grigoriev Y N, Ibragimov N H, Kovalev V F and Meleshko S V 2010 Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics (Dordrecht: Springer)
6. Ibragimov N H, Kovalev V F and Pustovalov V V 2002 Symmetries of integro-differential equations: a survey of methods illustrated by the Benny equations Nonlinear Dyn. 28 135-53
7. Zawistowski Z J 2001 Symmetries of integro-differential equations Rep. Math. Phys. 48 269-75
8. Roberts D 1985 The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations J. Plasma Phys. 33 219-36
9. Özer T 2005 Symmetry group analysis of Benney system and an application for shallow-water equations Mech. Res. Commun. 32 241-54
10. Grigoryev Yu N and Meleshko S V 1990 Group theoretical analysis of the kinetic Boltzmann equation and its models Arch. Mech. 42 693-701
11. Oberlack M and Rosteck A 2010 New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws Discrete Contin. Dyn. Syst., Ser. S 3 451-71
12. Wacławczyk M, Staffolani N, Oberlack M, Rosteck A, Wilczek M and Friedrich R 2014 Statistical symmetries of the Lundgren-Monin-Novikov hierarchy Phys. Rev. E 90 013022
13. Falkovich G 2007 Conformal invariance in hydrodynamic turbulence Russ. Math. Surv. 63 497-510
14. Falkovich G 2009 Symmetries of the turbulent state J. Phys. A: Math. Theor. 42 123001-19
15. Hosokawa I 2006 Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence Phys. Rev. E 73 067301
16. Ibragimov N H 1994 CRC Handbook of Lie Group Analysis of Differential Equations (Symmetries, Exact Solutions and Conservation Laws vol 1) (Boca Raton, FL: CRC Press)
17. Kovalev V F, Krivenko S V and Pustovalov V V 1992 Group symmetry of the kinetic equations of the colisionless plasma JETP Lett. 55 256-9
18. Fushchych W and Boyko V 1997 Continuity equation in nonlinear quantum mechanics and the Galilei principle J. Nonlinear Math. Phys. 4 124-8
19. Boyko V 2000 On Galilei invariance of continuity equation Proc. Inst. Math. NAS Ukraine 30 99-102
20. Grigoryev Y N, Meleshko S V and Sattayatham P 1999 Classification of invariant solutions of the Boltzmann equation J. Phys. A: Math. Gen. 32 L337-43
21. Bernard D, Boffetta G, Celani A and Falkovich G 2007 Inverse turbulent cascades and conformally invariant curves Phys. Rev. Lett. 98 024501
22. Gaeta G and Quintero N R 1999 Lie-point symmetries and stochastic differential equations J. Phys. A: Math. Gen. 32 8485-505
23. Ünal G 2003 Symmetries of Itô and Stratonovich dynamical systems and their conserved quantities Nonlinear Dyn. 32 417-26
24. Kozlov R 2012 On symmetries of stochastic differential equations Commun. Nonlinear Sci. Numer. Simul. 17 4947-51
25. Kozlov R 2013 On symmetries of the Fokker-Planck equation J. Eng. Math. 82 39-57
26. Friedrich R, Daitche A, Kamps O, Lülff J, Vo M and Wilczek M 2012 The Lundgren-Monin-Novikov hierarchy: kinetic equations for turbulence C. R. Phys. 13 929
27. Rosteck A 2013 Scaling laws in turbulence - a theoretical approach using Lie-point symmetries Dissertation TU, Darmstadt
28. Avsarkisov V, Hoyas S, Oberlack M and García-Galache J P 2014 Turbulent plane Couette flow at moderately high Reynolds number J. Fluid Mech. 751 R1
29. Nariboli G A 1977 Group-invariant solutions of the Fokker-Planck equation Stoch. Process. Appl. 5 157-71
30. Bobylev A V, Caraffini G L and Spiga G 1996 On group invariant solutions of the Boltzmann equation J. Math. Phys. 37 2787-95
31. Wilczek M, Daitche A and Friedrich R 2011 On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity J. Fluid Mech. 676 191-217
32. Kailasnath P, Sreenivasan K R and Stolovitzky G 1992 Probability density of velocity increments in turbulent flows Phys. Rev. Lett. 68 2766-9
33. Warhaft Z 1991 Probability distribution of a passive scalar in grid-generated turbulence Phys. Rev. Lett. 67 3503-6
|