Инд. авторы: Klimovskikh I.I., Sostina D., Petukhov A., Rybkin A.G., Eremeev S.V., Chulkov E.V., Tereshchenko O.E., Kokh K.A., Shikin A.M.
Заглавие: Spin-resolved band structure of heterojunction Bi-bilayer/3D topological insulator in the quantum dimension regime in annealed Bi2Te2.4Se0.6
Библ. ссылка: Klimovskikh I.I., Sostina D., Petukhov A., Rybkin A.G., Eremeev S.V., Chulkov E.V., Tereshchenko O.E., Kokh K.A., Shikin A.M. Spin-resolved band structure of heterojunction Bi-bilayer/3D topological insulator in the quantum dimension regime in annealed Bi2Te2.4Se0.6 // Scientific Reports. - 2017. - Vol.7. - Art.45797. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/srep45797; РИНЦ: 29500609; PubMed: 28378826; SCOPUS: 2-s2.0-85017120701; WoS: 000398381800001;
Реферат: eng: Two- and three-dimensional topological insulators are the key materials for the future nanoelectronic and spintronic devices and quantum computers. By means of angle- and spin-resolved photoemission spectroscopy we study the electronic and spin structure of the Bi-bilayer/3D topological insulator in quantum tunneling regime formed under the short annealing of Bi2Te2.4Se0.6. Owing to the temperature- induced restructuring of the topological insulator's surface quintuple layers, the holelike spin-split Bi-bilayer bands and the parabolic electronic-like state are observed instead of the Dirac cone. Scanning Tunneling Microscopy and X-ray Photoemission Spectroscopy measurements reveal the appearance of the Bi-2 terraces at the surface under the annealing. The experimental results are supported by density functional theory calculations, predicting the spin-polarized Bi- bilayer bands interacting with the quintuple-layers-derived states. Such an easily formed heterostructure promises exciting applications in spin transport devices and low-energy electronics.
Ключевые слова: BILAYER; SURFACE; BI2TE3; STATES;
Издано: 2017
Физ. характеристика: 45797
Цитирование: 1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). 2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011). 3. Yan, Y. et al. Topological surface state enhanced photothermoelectric Effect in Bi2Se3 nanoribbons. Nano Letters 14, 4389-4394 (2014). 4. Yan, Y. et al. High-mobility Bi2Se3 nanoplates manifesting quantum oscillations of surface states in the sidewalls. Scientifc Reports 4, 3817 EP-(2014). 5. Yan, Y. et al. Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Scientifc Reports 3, 1264 EP-(2013). 6. Shikin, A. M. et al. Out-of-plane polarization induced in magnetically-doped topological insulator Bi1.37V0.03Sb0.6Te 2Se by circularly polarized synchrotron radiation above a curie temperature. Applied Physics Letters 109, 222404 (2016). 7. Shikin, A. M. et al. Surface spin-polarized currents generated in topological insulators by circularly polarized synchrotron radiation and their photoelectron spectroscopy indication. Physics of the Solid State 58, 1675-1686 (2016). 8. König, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766-770 (2007). 9. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin hall Effect. Phys. Rev. Lett. 95, 146802 (2005). 10. Hirahara, T. et al. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te 3. Phys. Rev. Lett. 107, 166801 (2011). 11. Lee, P. et al. Topological modifcation of the electronic structure by Bi-bilayers lying deep inside bulk Bi2Se3. Journal of Physics: Condensed Matter 28, 085002 (2016). 12. Yeom, H. W. et al. Transforming a surface state of a topological insulator by a Bi capping layer. Phys. Rev. B 90, 235401 (2014). 13. Valla, T. et al. Topological semimetal in a Bi-Bi2Se3 infnitely adaptive superlattice phase. Phys. Rev. B 86, 241101 (2012). 14. Shokri, R. et al. Atomic and electronic structure of bismuth-bilayer-terminated Bi2Se3 (0001) prepared by atomic hydrogen etching. Phys. Rev. B 91, 205430 (2015). 15. Zhang, L., Yan, Y., Wu, H.-C., Yu, D. & Liao, Z.-M. Gate-tunable tunneling resistance in graphene/topological insulator vertical junctions. ACS Nano 10, 3816-3822 (2016). 16. Zhang, J., Triola, C. & Rossi, E. Proximity Effect in graphene/topological-insulator heterostructures. Phys. Rev. Lett. 112, 096802 (2014). 17. Bian, G. et al. Experimental observation of two massless Dirac-fermion gases in graphene-topological insulator heterostructure. 2D Materials 3, 021009 (2016). 18. Klimovskikh, I. I. et al. Spin-orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 11, 368-374 (2017). 19. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat Phys 10, 664-669 (2014). 20. Wada, M., Murakami, S., Freimuth, F. & Bihlmayer, G. Localized edge states in two-dimensional topological insulators: Ultrathin Bi flms. Phys. Rev. B 83, 121310 (2011). 21. Bian, G. et al. Engineering electronic structure of a two-dimensional topological insulator Bi(111) bilayer on Sb nanoflms by quantum confnement Effect. ACS Nano 10, 3859-3864 (2016). 22. Eich, A. et al. Intra-and interband electron scattering in a hybrid topological insulator: Bismuth bilayer on Bi2Se3. Phys. Rev. B 90, 155414 (2014). 23. Kim, S. H. et al. Edge and interfacial states in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te 2Se. Phys. Rev. B 89, 155436 (2014). 24. Lei, T. et al. Electronic structure evolution of single bilayer Bi(111) flm on 3D topological insulator Bi2Te xSe3-x surfaces. Journal of Physics: Condensed Matter 28, 255501 (2016). 25. Coelho, P. M. et al. Temperature-induced coexistence of a conducting bilayer and the bulk-terminated surface of the topological insulator Bi2Te 3. Nano Letters 13, 4517-4521 (2013). 26. Schouteden, K. et al. Annealing-induced bi bilayer on Bi2Te 3 investigated via quasi-particle-interference mapping. ACS Nano 10, 8778-8787 (2016). 27. Shikin, A. M. et al. Electronic and spin structure of the topological insulator Bi2Te 2.4Se0.6. Phys. Rev. B 89, 125416 (2014). 28. Filyanina, M. V. et al. Specifc features of the electronic, spin, and atomic structures of a topological insulator Bi2Te 2.4Se0.6. Physics of the Solid State 58, 779 (2016). 29. He, X. et al. Surface termination of cleaved Bi2Se3 investigated by low energy ion scattering. Phys. Rev. Lett. 110, 156101 (2013). 30. Bos, J. W. G., Zandbergen, H. W., Lee, M.-H., Ong, N. P. & Cava, R. J. Structures and thermoelectric properties of the infnitely adaptive series (Bi2)m(Bi2Te 3)n. Phys. Rev. B 75, 195203 (2007). 31. Lind, H. & Lidin, S. A general structure model for Bi-Se phases using a superspace formalism. Solid State Sciences 5, 47-57 (2003). 32. Gibson, Q. D. et al. Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys. Rev. B 88, 081108 (2013). 33. Neupane, M. et al. Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 flms. Nature Comm. 5, 3841 (2014). 34. Landolt, G. et al. Spin texture of Bi2Se3 thin flms in the quantum tunneling limit. Phys. Rev. Lett. 112, 057601 (2014). 35. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Se3. Science 325, 178-181 (2009). 36. Repin, E. & Burmistrov, I. Surface states in a 3D topological insulator: the role of hexagonal warping and curvature. ZhETF 148, 584 (2015). 37. Ast, C. R. & Höchst, H. Electronic structure of a bismuth bilayer. Phys. Rev. B 67, 113102 (2003). 38. Koroteev, Y. M., Bihlmayer, G., Chulkov, E. V. & Blügel, S. First-principles investigation of structural and electronic properties of ultrathin Bi flms. Phys. Rev. B 77, 045428 (2008). 39. Klimovskih, I. I. et al. Spin polarization of quantum-well and interface states of ultrathin flms of Bi on W(110) with ag interlayers. Bulletin of the Russian Academy of Sciences: Physics 78, 39-42 (2014). 40. Kokh, K. A., Nenashev, B. G., Kokh, A. E. & Shvedenkov, G. Y. Application of a rotating heat feld in bridgman-stockbarger crystal growth. Journal of Crystal Growth 275, e2129-e2134 (2005). 41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). 42. Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to RN. Phys. Rev. B 58, 3641-3662 (1998). 43. Gonze, X. et al. Abinit: First-principles approach to material and nanosystem properties. Computer Physics Communications 180, 2582-2615 (2009).