Цитирование: | 1. [1] Becker, P., Borate materials in nonlinear optics. Adv. Mater. 10 (1998), 979–992, 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N.
2. [2] Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., Kamimura, T., Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light. Mater. Sci. Eng. R Rep. 30 (2000), 1–54, 10.1016/S0927-796X(00)00025-5.
3. [3] Kumar, R.A., Arivanandhan, M., Hayakawa, Y., Recent advances in rare earth-based borate single crystals: potential materials for nonlinear optical and laser applications. Prog. Cryst. Growth Charact. Mater. 59:3 (2013), 113–132, 10.1016/j.pcrysgrow.2013.07.001.
4. [4] Aka, G., Brenier, A., Self-frequency conversion in nonlinear laser crystals. Opt. Mater. 22 (2003), 89–94, 10.1016/S0925-3467(02)00351-8.
5. [5] G. Aka, J. Gordard, L. Bloch, A. Kahn-Harari, F. Salin, D. Vivien, Non-linear crystals and uses thereof, World Patent WO/1996/026464 A1, 1996.
6. [6] Jubera, V., Chaminade, J.P., Garcia, A., Guillen, F., Fouassier, C., Luminescent properties of Eu 3+-activated lithium rare earth borates and oxyborates. J. Lumin. 101 (2003), 1–10, 10.1016/S0022-2313(02)00335-6.
7. [7] Lian, Z., Sun, J., Zhang, L., Shen, D., Shen, G., Wang, X., Yan, Q., Crystal structure refinement and luminescence properties of Ce3+ singly doped and Ce3+/Mn2+ co-doped KBaY(BO3)2 for n-UV pumped white-light-emitting diodes. RSC Adv. 3 (2013), 16534–16541, 10.1039/C3RA42380H.
8. [8] Han, L., Wang, Y., Wang, Y., Zhang, J., Tao, Y., Observation of efficient energy transfer from host to rare-earth ions in KBaY (BO 3)2:Tb3+ phosphor for plasma display panel. J. Alloys Compd. 551 (2013), 485–489, 10.1016/j.jallcom.2012.11.011.
9. [9] Gao, J., Song, L., Hu, X., Zhang, D., A buetschliite-type rare-earth borate, KBaY(BO3)2. Solid State Sci. 13 (2011), 115–119, 10.1016/j.solidstatesciences.2010.10.021.
10. [10] Seryotkin, Y.V., Bakakin, V.V., Kokh, A.E., Kononova, N.G., Svetlyakova, T.N., Kokh, K.A., Drebushchak, T.N., Synthesis and crystal structure of new layered BaNaSc(BO3)2 and BaNaY(BO3)2 orthoborates. J. Solid State Chem. 183:5 (2010), 1200–1204, 10.1016/j.jssc.2010.03.005.
11. [11] Svetlyakova, T., Kononova, N., Kokh, A., Urakaev, F., Filatov, S., Bubnova, R., Kokh, K., Synthesis, growth and some physical properties of new orthoborates ScBaNa(BO3)2 and YBaNa(BO3)2. J. Cryst. Growth 318 (2011), 954–957, 10.1016/j.jcrysgro.2010.10.017.
12. [12] Svetlyakova, T.N., Kokh, A.E., Kononova, N.G., Fedorov, P.P., Rashchenko, S.V., Maillard, A., Search for compounds of the NaBaR(BO3)2 family (R= La, Nd, Gd, and Yb) and the new NaBaYb(BO3)2 orthoborate. Crystallogr. Rep. 58 (2013), 54–60, 10.1134/S1063774513010136.
13. [13] Oxford, Diffraction, Xcalibur CCD System, CrysAlis Software System. 2008(a), Oxford Diffraction Ltd, Abingdon.
14. [14] Oxford, Diffraction, CrysAlisRED Software System. 2008(b), Oxford Diffraction Ltd, Abingdon.
15. [15] Sheldrick, G., A short history of SHELX. Acta Crystallogr. Sect. A A64 (2008), 112–122, 10.1107/S0108767307043930.
16. [16] Wells, A.F., Structural Inorganic Chemistry. 1984, Clarendon Press, Oxford.
17. [17] Zhang, G., Liu, Z., Zhang, J., Fan, F., Liu, Y., Fu, P., Crystal growth, structure, and properties of a non-centrosymmetric fluoride borate, Ba3Sr4 (BO3)3F5. Cryst. Growth Des. 9:7 (2009), 3137–3141, 10.1021/cg801124z.
18. [18] Li, X.Z., Wang, C., Chen, X.L., Li, H., Jia, L.S., Wu, L., Xu, Y.P., Syntheses, thermal stability, and structure determination of the novel isostructural RBa3B9O18 (R= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Inorg. Chem. 43:26 (2004), 8555–8560, 10.1021/ic049710m.
19. [19] Akella, A., Keszler, D.A., Structure and Eu2+ luminescence of dibarium magnesium orthoborate. Mater. Res. Bull. 30 (1995), 105–111, 10.1016/0025-5408(94)00113-8.
20. [20] Knobloch, D., Pertlik, F., Zemann, J., Crystal structure refinement of Buetschliite and Eitelite: a contribution to the stereochemistry of trigonal carbonate minerals. N. Jb. Mineral. Mh., 1980, 230–236.
21. [21] Effenberger, H., Langhof, H., On the aplanarity of the CO3 group in buetschliite, dipotassium calcium dicarbonate, K2Ca(CO3)2: a further refinement of the atomic arrangement. Acta Crystallogr. Sect. C. Cryst. Struct. Commun. 40:7 (1984), 1299–1300, 10.1107/S0108270184007721.
22. [22] Holland, T.J.B., Redfern, S.A.T., Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61 (1997), 65–77.
23. [23] Dronskowski, R., Computational Chemistry of Solid State Materials: a Guide for Materials Scientists, Chemists, Physicists and Others. 2005, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim.
24. [24] Liu, G., Jacquier, B., Spectroscopic Properties of Rare Earths in Optical Materials. 2006, Springer Science & Business Media.
25. [25] Blasse, G., Grabmaier, B.C., Radiative return to the ground state: Emission. Blasse, G., Grabmaier, B.C., (eds.) Luminescent Materials, 1994, Springer-Verlag Berlin Heidelberg, 33–70.
26. [26] Blasse, G., Grabmaier, B.C., Energy transfer. Blasse, G., Grabmaier, B.C., (eds.) Luminescent Materials, 1994, Springer-Verlag Berlin Heidelberg, 91–107.
27. [27] Lian, Z., Sun, J., Ma, Z., Zhang, L., Shen, D., Shen, G., Wang, X., Yan, Q., Synthesis, crystal structure, characterization and luminescence properties of KBaTbB2O6. J. Cryst. growth 401 (2014), 334–337, 10.1016/j.jcrysgro.2013.11.007.
28. [28] Peng, Y., Lian, Z., Zhang, L., Shen, G., Wang, X., Yan, Q., Ce3+/Tb3+ co-doped KBaY(BO3)2: a color-tunable blue-green phosphor for near-UV white LEDs. Mater. Express 4 (2014), 533–538, 10.1166/mex.2014.1195.
|