Инд. авторы: Kokh A.E., Kononova N.G., Shevchenko V.S., Seryotkin Y.V., Bolatov A.K., Abdullin K.A., Uralbekov B.M., Burkitbayev M.
Заглавие: Syntheses, crystal structure and luminescence properties of the novel isostructural KSrR(BO3)2 with R = Y, Yb, Tb
Библ. ссылка: Kokh A.E., Kononova N.G., Shevchenko V.S., Seryotkin Y.V., Bolatov A.K., Abdullin K.A., Uralbekov B.M., Burkitbayev M. Syntheses, crystal structure and luminescence properties of the novel isostructural KSrR(BO3)2 with R = Y, Yb, Tb // Journal of Alloys and Compounds. - 2017. - Vol.711. - P.440-445. - ISSN 0925-8388. - EISSN 1873-4669.
Внешние системы: DOI: 10.1016/j.jallcom.2017.03.322; РИНЦ: 29500294; SCOPUS: 2-s2.0-85017173044; WoS: 000401593200057;
Реферат: eng: Three new rare-earth based orthoborates KSrR(BO3)2, with R = Y, Tb, Yb were synthesized by solid-state reaction method. Single crystals of KSrR(BO3)2 were obtained by spontaneous crystallization using selected flux. Single-crystal X-ray diffraction measurements reveal that KSrY(BO3)2 crystallizes in monoclinic space group P21/m with cell parameters of a = 9.2743(3) Å, b = 5.35919(12) Å, c = 6.5749(2) Å, and β = 117.682(4)°. Distinctive feature of studied borates structure is the close-packed composite of anion-cation (K,Sr)(BO3) layers. The two-layer {Y[KSr(BO3)2]} package is the base building block for this structure, with one package on c-period. The comparison of the structures of Ba2Mg(BO3)2, BaNaY(BO3)2, KBaY(BO3)2 and KSrY(BO3)2 is discussed. The photoluminescence properties of the synthesized borate KSrTb(BO)3 under UV excitation have been investigated in a detail. © 2017 Elsevier B.V.
Ключевые слова: Single crystal structure; Rare-earth borates; Luminescence;
Издано: 2017
Физ. характеристика: с.440-445
Цитирование: 1. [1] Becker, P., Borate materials in nonlinear optics. Adv. Mater. 10 (1998), 979–992, 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N. 2. [2] Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., Kamimura, T., Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light. Mater. Sci. Eng. R Rep. 30 (2000), 1–54, 10.1016/S0927-796X(00)00025-5. 3. [3] Kumar, R.A., Arivanandhan, M., Hayakawa, Y., Recent advances in rare earth-based borate single crystals: potential materials for nonlinear optical and laser applications. Prog. Cryst. Growth Charact. Mater. 59:3 (2013), 113–132, 10.1016/j.pcrysgrow.2013.07.001. 4. [4] Aka, G., Brenier, A., Self-frequency conversion in nonlinear laser crystals. Opt. Mater. 22 (2003), 89–94, 10.1016/S0925-3467(02)00351-8. 5. [5] G. Aka, J. Gordard, L. Bloch, A. Kahn-Harari, F. Salin, D. Vivien, Non-linear crystals and uses thereof, World Patent WO/1996/026464 A1, 1996. 6. [6] Jubera, V., Chaminade, J.P., Garcia, A., Guillen, F., Fouassier, C., Luminescent properties of Eu 3+-activated lithium rare earth borates and oxyborates. J. Lumin. 101 (2003), 1–10, 10.1016/S0022-2313(02)00335-6. 7. [7] Lian, Z., Sun, J., Zhang, L., Shen, D., Shen, G., Wang, X., Yan, Q., Crystal structure refinement and luminescence properties of Ce3+ singly doped and Ce3+/Mn2+ co-doped KBaY(BO3)2 for n-UV pumped white-light-emitting diodes. RSC Adv. 3 (2013), 16534–16541, 10.1039/C3RA42380H. 8. [8] Han, L., Wang, Y., Wang, Y., Zhang, J., Tao, Y., Observation of efficient energy transfer from host to rare-earth ions in KBaY (BO 3)2:Tb3+ phosphor for plasma display panel. J. Alloys Compd. 551 (2013), 485–489, 10.1016/j.jallcom.2012.11.011. 9. [9] Gao, J., Song, L., Hu, X., Zhang, D., A buetschliite-type rare-earth borate, KBaY(BO3)2. Solid State Sci. 13 (2011), 115–119, 10.1016/j.solidstatesciences.2010.10.021. 10. [10] Seryotkin, Y.V., Bakakin, V.V., Kokh, A.E., Kononova, N.G., Svetlyakova, T.N., Kokh, K.A., Drebushchak, T.N., Synthesis and crystal structure of new layered BaNaSc(BO3)2 and BaNaY(BO3)2 orthoborates. J. Solid State Chem. 183:5 (2010), 1200–1204, 10.1016/j.jssc.2010.03.005. 11. [11] Svetlyakova, T., Kononova, N., Kokh, A., Urakaev, F., Filatov, S., Bubnova, R., Kokh, K., Synthesis, growth and some physical properties of new orthoborates ScBaNa(BO3)2 and YBaNa(BO3)2. J. Cryst. Growth 318 (2011), 954–957, 10.1016/j.jcrysgro.2010.10.017. 12. [12] Svetlyakova, T.N., Kokh, A.E., Kononova, N.G., Fedorov, P.P., Rashchenko, S.V., Maillard, A., Search for compounds of the NaBaR(BO3)2 family (R= La, Nd, Gd, and Yb) and the new NaBaYb(BO3)2 orthoborate. Crystallogr. Rep. 58 (2013), 54–60, 10.1134/S1063774513010136. 13. [13] Oxford, Diffraction, Xcalibur CCD System, CrysAlis Software System. 2008(a), Oxford Diffraction Ltd, Abingdon. 14. [14] Oxford, Diffraction, CrysAlisRED Software System. 2008(b), Oxford Diffraction Ltd, Abingdon. 15. [15] Sheldrick, G., A short history of SHELX. Acta Crystallogr. Sect. A A64 (2008), 112–122, 10.1107/S0108767307043930. 16. [16] Wells, A.F., Structural Inorganic Chemistry. 1984, Clarendon Press, Oxford. 17. [17] Zhang, G., Liu, Z., Zhang, J., Fan, F., Liu, Y., Fu, P., Crystal growth, structure, and properties of a non-centrosymmetric fluoride borate, Ba3Sr4 (BO3)3F5. Cryst. Growth Des. 9:7 (2009), 3137–3141, 10.1021/cg801124z. 18. [18] Li, X.Z., Wang, C., Chen, X.L., Li, H., Jia, L.S., Wu, L., Xu, Y.P., Syntheses, thermal stability, and structure determination of the novel isostructural RBa3B9O18 (R= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Inorg. Chem. 43:26 (2004), 8555–8560, 10.1021/ic049710m. 19. [19] Akella, A., Keszler, D.A., Structure and Eu2+ luminescence of dibarium magnesium orthoborate. Mater. Res. Bull. 30 (1995), 105–111, 10.1016/0025-5408(94)00113-8. 20. [20] Knobloch, D., Pertlik, F., Zemann, J., Crystal structure refinement of Buetschliite and Eitelite: a contribution to the stereochemistry of trigonal carbonate minerals. N. Jb. Mineral. Mh., 1980, 230–236. 21. [21] Effenberger, H., Langhof, H., On the aplanarity of the CO3 group in buetschliite, dipotassium calcium dicarbonate, K2Ca(CO3)2: a further refinement of the atomic arrangement. Acta Crystallogr. Sect. C. Cryst. Struct. Commun. 40:7 (1984), 1299–1300, 10.1107/S0108270184007721. 22. [22] Holland, T.J.B., Redfern, S.A.T., Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61 (1997), 65–77. 23. [23] Dronskowski, R., Computational Chemistry of Solid State Materials: a Guide for Materials Scientists, Chemists, Physicists and Others. 2005, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim. 24. [24] Liu, G., Jacquier, B., Spectroscopic Properties of Rare Earths in Optical Materials. 2006, Springer Science & Business Media. 25. [25] Blasse, G., Grabmaier, B.C., Radiative return to the ground state: Emission. Blasse, G., Grabmaier, B.C., (eds.) Luminescent Materials, 1994, Springer-Verlag Berlin Heidelberg, 33–70. 26. [26] Blasse, G., Grabmaier, B.C., Energy transfer. Blasse, G., Grabmaier, B.C., (eds.) Luminescent Materials, 1994, Springer-Verlag Berlin Heidelberg, 91–107. 27. [27] Lian, Z., Sun, J., Ma, Z., Zhang, L., Shen, D., Shen, G., Wang, X., Yan, Q., Synthesis, crystal structure, characterization and luminescence properties of KBaTbB2O6. J. Cryst. growth 401 (2014), 334–337, 10.1016/j.jcrysgro.2013.11.007. 28. [28] Peng, Y., Lian, Z., Zhang, L., Shen, G., Wang, X., Yan, Q., Ce3+/Tb3+ co-doped KBaY(BO3)2: a color-tunable blue-green phosphor for near-UV white LEDs. Mater. Express 4 (2014), 533–538, 10.1166/mex.2014.1195.