Инд. авторы: Zedgenizov D.A., Kalinin A.A, Alinina V.V.K., Palyanov Yu.N, Shatsky V.S.
Заглавие: Nitrogen and hydrogen aggregation in natural octahedral and cuboid diamonds
Библ. ссылка: Zedgenizov D.A., Kalinin A.A, Alinina V.V.K., Palyanov Yu.N, Shatsky V.S. Nitrogen and hydrogen aggregation in natural octahedral and cuboid diamonds // Geochemical Journal. - 2017. - Vol.51. - Iss. 2. - P.181-192. - ISSN 0016-7002. - EISSN 1880-5973.
Внешние системы: DOI: 10.2343/geochemj.2.0452; РИНЦ: 29503866; SCOPUS: 2-s2.0-85017103707; WoS: 000404681600005;
Реферат: eng: Transformations of nitrogen and hydrogen defects in natural octahedral and cuboid diamonds after multi-stage annealing at P = 6 GPa and T = 2200°C are presented. It has been observed that nitrogen aggregation from A- to B-defects in octahedral diamonds has gradually increased. This transformation of nitrogen has proceeded more rapidly in cuboid diamonds. One may confirm that most of the cuboid diamonds characterized by a low nitrogen aggregation state were not annealed over a long period at mantle conditions and their formation occurred shortly before transportation to the Earth's surface. Unlike octahedral diamonds, cuboid diamonds show a considerable increase in the intensity of the primary hydrogen-related peaks after the annealing, thus implying involvement of sites to which the hydrogen can bond and become IR-active, but these sites are simply not available in the octahedral diamonds. The magnitude to which peak 3107 cm-1 is increased after annealing has been found to be correlated with the total nitrogen content in cuboid diamonds. This supports the suggestion that the vibrational system with a primary line at 3107 cm-1corresponds to a C-H vibration bonded to some form of aggregated nitrogen. Copyright © 2017 by The Geochemical Society of Japan.
Ключевые слова: Hydrogen; HP-HT treatment; Defects; Cuboid; Annealing; Aggregation; Diamond; Nitrogen;
Издано: 2017
Физ. характеристика: с.181-192
Цитирование: 1. Boyd, F. R. and Finnerty, A. A. (1980) Conditions of origin of natural diamonds of peridotitic affinity. J. Geophys. Res. 85, 6911-6918. 2. Boyd, S. R. and Pillinger, C. T. (1994) A preliminary-study of N15 N14 in octahedral growth form diamonds. Chem. Geol. 116, 43-59. 3. Bulanova, G. P. (1995) The formation of diamond. J. Geochem. Explor. 53, 1-23. 4. Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements 1(2), 79-84. 5. Chrenko, R. M., Tuft, R. E. and Strong, H. M. (1977) Transformation of the state of nitrogen in diamond. Nature 270, 141-144. 6. Clark, C. D. and Davey, S. T. (1984) One-phonon infrared absorption in diamond. J. Phys. C. Sol. St. Phys. 17, 1127-1140. 7. Collins, A. T. (1980). Vacancy enhanced aggregation of nitrogen in diamond. J. Phys. Sol. St. Phys. 13, 2641-2650. 8. De Weerdt, F. and Collins, A. T. (2006) Optical study of the annealing behaviour of the 3107 cm-1 defect in natural diamonds. Diam. Relat. Mater. 15, 593-596. 9. De Weerdt, F. and Kupriyanov, I. N. (2002) Report on the influence of HPHT annealing on the 3107 cm-1 hydrogen related absorption peak in natural type Ia diamonds. Diam. Relat. Mater. 11(3-6), 714-715. 10. De Weerdt, F., Pal'yanov, Y. N. and Collins, A. T. (2003) Absorption spectra of hydrogen in 13C diamond produced by high-pressure, high-temperature synthesis. J. Phys. Condens. Matter. 15, 3163-3170. 11. Evans, T. (1992) Aggregation of nitrogen in diamond. The Properties of Natural and Synthetic Diamond (Field, J. E., ed.), 259-290, Academic Press, London. 12. Evans, T. and Harris, J. W. (1989) Nitrogen aggregation, inclusion equilibration temperatures and the age ofdiamonds. J. Ross, Kimberlites and Related Rocks 2, 1001-1006. 13. Evans, T. and Qi, Z. (1982) The kinetics of the aggregation of nitrogen atoms in diamond. Proc. R. Soc. Long. A 381, 159-178. 14. Fallon, P. J., Brown, L. M., Barry, J. C. and Bruley, J. (1995) Nitrogen determination and characterization in natural diamond platelets. Philos. Mag. A 72(1), 21-37. 15. Fritsch, E., Hainschwang, T., Massi, L. and Rondeau, B. (2007) Hydrogen-related optical centers in natural diamond. New Diamond Front Carbon Technol. 17, 63-89. 16. Galimov, E. M. (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim. Cosmochim. Acta 55, 1697-1708. 17. Goss, J., Coomer, B., Jones, R., Fall, C., Briddon, P. and Öberg, S. (2003) Extended defects in diamond: the interstitial platelet. Phys. Rev. B 67(16), 165208. 18. Harris, J. W. (1992) Diamond geology. The Properties of Natural and Synthetic Diamond (Field, J. E., ed.), 345-349, Academic Press, London. 19. Howell, D., O'Neill, C. J., Grant, K. J., Griffin, W. L., O'Reilly, S. Y., Pearson, N. J., Stern, R. A. and Stachel, T. (2012) Platelet development in cuboid diamonds: insights from micro-FTIR mapping. Contrib. Mineral. Petrol. 164, 1011-1025. 20. Iakoubovskii, K. and Adriaenssens, G. J. (2000a) Characterization of platelet-related infrared luminescence in diamond. Phil. Mag. Lett. 80(6), 441. 21. Iakoubovskii, K. and Adriaenssens, G. J. (2000b) Optical characterization of natural Argyle diamonds. Diam. Relat. Mater. 11, 125-131. 22. Kiflawi, I., Fisher, D., Kanda, H. and Sittas, G. (1996) The creation of the 3107 cm-1 hydrogen absorption peak in synthetic diamond single crystals. Diam. Relat. Mater. 5, 1516-1518. 23. Kim, J. R., Kim, D. K., Zhu, H. and Abbaschian, R. (2011) High pressure and high temperature annealing on nitrogen aggregation in lab-grown diamonds. J. Mater. Sci. 46(19), 6264-6272. 24. Kupriyanov, I. N., Pal'yanov, Y. N., Shatsky, V. S., Kalinin, A. A., Nadolinnyi, V. A. and Yur'eva, O. P. (2006) Study of the transformation of hydrogen-containing centers in diamond at high PT parameters. Dokl. Earth. Sci. 406(1), 69-73. 25. Meyer, H. O. A. (1987) Inclusions in diamond. Mantle Xenoliths, 501-522, John Wiley & Sons, New York. 26. Moore, M. and Lang, A. R. (1972) Internal structure of natural diamonds of cubic habit. Philos. Mag. 26(6), 1313-1325. 27. Palyanov, Y. N., Borzdov, Y. M., Khokhryakov, A. F., Kupriyanov, I. N. and Sokol, A. G. (2010) Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth. Des. 10(7), 3169-3175. 28. Pinti, D. L., Ishida, A., Takahata, N., Sano, Y., Bureau, H. and Cartigny, P. (2016) Micron-scale δ13C determination by NanoSIMS in a Juina diamond with a carbonate inclusion. Geochem. J. 50, e7-e12. 29. Reutsky, V. N. and Zedgenizov, D. A. (2007) Some specific features of genesis of microdiamonds of octahedral and cubic habit from kimberlites of the Udachnaya pipe (Yakutia) inferred from carbon isotopes and main impurity defects. Russ. Geol. Geophys. 48, 299-304. 30. Rondeau, B., Fritsch, E., Guiraud, M., Chalain, J.-P. and Notari, F. (2004) Three historical 'asteriated' hydrogen-rich diamonds: growth history and sector-dependence impurity incorporation. Diam. Relat. Mater. 13, 1658-1673. 31. Rudnick, R. L., McDonough, W. F. and O'Connell, R. J. (1998) Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395-411. 32. Sobolev, E. V. and Lenskaya, S. V. (1965) About the occurrence of "gaseous" impurities in spectra of natural diamonds. Geol. Geofiz. 2, 157-159. 33. Sobolev, N. V. (1977) Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. (Translated from the Russian edition, 1974.) AGU, Washington, D. C., 279 pp. 34. Stachel, T. and Harris, J. W. (2008) The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol. Rev. 34(1), 5-32. 35. Stachel, T. and Luth, R. W. (2015) Diamond formation-Where, when and how? Lithos 220, 200-220. 36. Sunagawa, I. (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J. Cryst. Growth 99(1-4), 1156-1161. 37. Taylor, W. R., Canil, D. and Milledge, H. J. (1996) Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim. Cosmochim. Acta 60, 4725-4733. 38. Woods, G. S. and Collins, A. T. (1983) Infrared absorption spectra of hydrogen complexes in type I diamonds. J. Phys. Chem. Solids 44, 471-475. 39. Woods, G. S., Purser, G. C., Mtimkulu, A. S. S. and Collins, A. T. (1990) The nitrogen content of type Ia natural diamonds. J. Phys. Chem. Solids 51, 1191-1197. 40. Zaitsev, A. M. (2001) Optical Properties of Diamond: A Data Handbook. Springer, Berlin. 41. Zedgenizov, D. A., Harte, B., Shatsky, V. S., Politov, A. A., Rylov, G. M. and Sobolev, N. V. (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib. Mineral. Petrol. 151, 45-57. 42. Zedgenizov, D. A., Kalinin, A. A., Kalinina, V. V., Pal'yanov, Yu. N. and Shatsky, V. S. (2016) The transformation features of impurity defects in natural diamonds of various habits under high P-T conditions. Dokl. Earth Sci. 466, 32-37.