Инд. авторы: Kokh S.N., Sokol E.V., Deev E.V., Ryapolova Y.M., Rusanov G.G., Tomilenko A.A., Bul'bak T.A.
Заглавие: Post-Late Glacial calcareous tufas from the Kurai fault zone (Southeastern Gorny Altai, Russia)
Библ. ссылка: Kokh S.N., Sokol E.V., Deev E.V., Ryapolova Y.M., Rusanov G.G., Tomilenko A.A., Bul'bak T.A. Post-Late Glacial calcareous tufas from the Kurai fault zone (Southeastern Gorny Altai, Russia) // Sedimentary Geology. - 2017. - Vol.355. - P.1-19. - ISSN 0037-0738. - EISSN 1879-0968.
Внешние системы: DOI: 10.1016/j.sedgeo.2017.04.003; РИНЦ: 29524288; РИНЦ: 29524288; SCOPUS: 2-s2.0-85017646309; WoS: 000403130000001;
Реферат: eng: Calcareous tufa deposits have been discovered in the Chibitka River valley near Lake Cheybek-Kohl, at the junction of the Kurai and Teletsk-Kurai large active faults in the southeastern Gorny Altai, Russia, at an altitude of 1800–2000 m. Fossil tufa is composed of calcite and cements Holocene grey colluvium and glacial till deposited by the Late Glacial Chibitka Glacier. Current tufa precipitation has been observed from a low-flow spring with cold (10 °C) HCO3-SO4–Ca-Mg water, рН = 6.86. The stable isotope composition of spring water is − 5.8‰ VPDB δ13C of dissolved inorganic carbon and − 14.5‰ VSMOW δ18O. Modern tufa consists of thin laminated Mg-calcite and Sr-aragonite crusts, with abundant algae and biofilms on their surfaces. Both modern and fossil tufas are depleted in REE (a total of 0.40–16.4 ppm and 0.40–3.80 ppm, respectively) and share similar PAAS-normalised REE + Y spectra with HREE enrichment and slight progressive LREE depletion. The modern tufas show positive δ13C values of 0.1‰ to 0.9‰ VPDB while the fossil ones have an isotopically lighter composition of δ13C = − 4.1‰ to − 1.9‰ VPDB; the δ18O range is very narrow (− 13.0 to − 13.8‰ VPDB). Both stable isotope and trace-element signatures (including REE patterns) of the tufas indicate precipitation from cold groundwaters subjected to prolonged interaction with a carbonate aquifer (the Baratal Group of limestone and dolostone) in a cold continental climate similar to the present conditions. Tufa deposition in the Lake Cheybek-Kohl area began with the onset of post-Late Glacial global warming and permafrost degradation. Unlike the fossil tufa formation, current precipitation of freshwater carbonates has been microbially mediated. The discovered tufa deposits provide new palaeoclimatic and active tectonic proxies in the southeastern Gorny Altai. © 2017 Elsevier B.V.
Ключевые слова: Faulting; Permafrost degradation; Gorny Altai; Element signatures; Dissolved inorganic carbon; Continental climate; Carbonate aquifer; Calcareous tufa; Active fault; Trace elements; Permafrost; Lakes; Isotopes; Global warming; Glacial geology; Geochemistry; Deposits; Carbon; Calcite; Aquifers; Permafrost; Isotopes; Gorny Altai; Geochemistry; Calcareous tufa; Active fault; Groundwater; algae;
Издано: 2017
Физ. характеристика: с.1-19
Цитирование: 1. Agatova, A.R., Nazarov, A.N., Nepop, R.K., Rodnight, H., Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quaternary Science Reviews 43 (2012), 74–93. 2. Agatova, A.R., Nepop, R.K., Slyusarenko, I.Y., Myglan, V.S., Nazarov, A.N., Barinov, V.V., Glacier dynamics, palaeohydrological changes and seismicity in southeastern Altai (Russia) and their influence on human occupation during the last 3000 years. Quaternary International 324 (2014), 6–19. 3. Andrews, J.E., Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews 75 (2006), 85–104. 4. Andrews, J.E., Brasier, A.T., Seasonal records of climate change in annually laminated tufas: short review and future prospects. Journal of Quaternary Science 20 (2005), 411–421. 5. Andrews, J.E., Pedley, H.M., Dennis, P.F., Stable isotope record of palaeoclimate change in a British Holocene tufa. Holocene 4 (1994), 349–355. 6. Andrews, J.E., Riding, R., Dennis, P.F., The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129 (1997), 171–189. 7. Andrews, J.E., Pedley, H.M., Dennis, P.F., Palaeoenvironmental records in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives. Sedimentology 47 (2000), 961–978. 8. Arvidsson, R., Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science 274 (1996), 744–746. 9. Ballantyne, C.K., Sandeman, G.F., Stone, J.O., Wilson, P., Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quaternary Science Reviews 86 (2014), 144–157. 10. Bau, M., Dulski, P., Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79 (1996), 37–55. 11. Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O., Ammann, B., Late-glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209 (2004), 259–279. 12. Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222 (2004), 43–60. 13. Bondarenko, P.M., Devyatkin, E.V., Liskun, I.G., Cenozoic neotectonics and stratigraphy of the Aktash region in the Kurai neotectonic zone of Gorny Altai. Florensov, N.A., (eds.) Problems of Geomorphology and Neotectonics of Mountain Provinces in Siberia and Russian Far East Proc. USSR Workshop on Geomorphology and Neotectonics of Siberia and Russian Far East. Book II. Novosibirsk, Nauka, 1968, 65–73 (in Russian). 14. Brogi, A., Capezzuoli, E., Alҫiҫek, C.M., Gandin, A., Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey). Journal of the Geological Society, 171(3), 2014, 425. 15. Buslov, M.M., Tectonics and geodynamics of the central Asian foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics 52:1 (2011), 52–71. 16. Buslov, M.M., Watanabe, T., Saphonova, I.Y., Iwata, K., Travin, A., Akiyama, M., A Vendian–Cambrian island arc system of the Siberian continent in Gorny Altai (Russia, Central Asia). Gondwana Research 5:4 (2002), 781–800. 17. Butvilovsky, V.V., Paleogeography of the Latest Glaciation and Holocene of Altai: An Event–Catastrophic Model. 1993, Tomsk University, Tomsk (253 pp., in Russian). 18. Cantonati, M., Segadelli, S., Ogata, K., Tran, H., Sanders, D., Gerecke, R., Rott, E., Filippini, M., Gargini, A., Celico, F., A global review on ambient Limestone-Precipitating Springs (LPS): hydrogeological setting, ecology, and conservation. Science of the Total Environment 568 (2016), 624–637. 19. Chafetz, H.S., Folk, R.L., Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Research 54 (1984), 289–316. 20. Chikov, B.M., Zinoviev, S.V., Deev, E.V., Mesozoic and Cenozoic collisional structures of the southern Great Altai. Russian Geology and Geophysics 49:5 (2008), 323–331. 21. Chikov, B.M., Zinoviev, S.V., Deyev, E.V., Post-late Paleozoic collisional framework of southern Great Altai. Acta Geologica Sinica (English Edition) 86:5 (2012), 1093–1104. 22. Choi, H.S., Yun, S.T., Koh, Y.K., Mayer, B., Park, S.S., Hutcheon, I., Geochemical behavior of rare earth elements during the evolution of CO2-rich groundwater: a study from the Kangwon district, South Korea. Chemical Geology 262:3–4 (2009), 334–343. 23. Crossey, L.J., Karlstrom, K.E., Springer, A.E., Newell, D., Hilton, D.R., Fischer, T., Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region-neotectonic connections and implications for groundwater systems. Geological Society of America Bulletin 121:7–8 (2009), 1034–1053. 24. Decho, A.W., Visscher, P.T., Reid, R.P., Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography Palaeoclimatology Palaeoecology 219 (2005), 71–86. 25. Deev, E.V., Nevedrova, N.N., Zol'nikov, I.D., Rusanov, G.G., Ponomarev, P.V., Geoelectrical studies of the Chuya basin sedimentary fill (Gorny Altai). Russian Geology and Geophysics 53:1 (2012), 92–107. 26. Deev, E.V., Sokol, E.V., Ryapolova, Yu.M., Kokh, S.N., Rusanov, G.G., Quaternary travertines of Kurai fault zone (Gorny Altai). Doklady Earth Sciences 473:1 (2017), 1–6. 27. Deev, E.V., Turova, I.V., Borodovskiy, A.P., Zolnikov, I.D., Oleszczak, L., Unknown large ancient earthquakes along the Kurai fault zone (Gorny Altai): new results of palaeoseismological and archaeoseismological studies. International Geology Review 59:3 (2017), 293–310. 28. Delvaux, D., Theunissen, K., Van Der Meer, R., Berzin, N., Dynamics and paleostress of the Cenozoic KuraiChuya depression of Gorny Altai (South Siberia): tectonic and climatic control. Russian Geology and Geophysics 36:10 (1995), 26–45. 29. Delvaux, D., Cloetingh, S., Beekman, F., Sokoutis, D., Burov, E., Buslov, M.M., Abdrakhmatov, K.E., Basin evolution in a folding lithosphere: Altai–Sayan and Tien Shan belts in Central Asia. Tectonophysics 602 (2013), 194–222. 30. Deviatkin, E.V., Cenozoic Deposits and Neotectonics in South-Eastern Altai. Moscow, Nauka. 1965 (244 pp., in Russian). 31. Dilsiz, C., Marques, J., Carreira, P., The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SWTurkey). Environmental Geology 45 (2004), 808–817. 32. Dobretsov, N.L., Buslov, M.M., Delvaux, D., Berzin, N.A., Ermikov, V.D., Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. International Geology Review 38 (1996), 430–466. 33. Drysdale, R., Taylor, M., Ihlenfeld, C., Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia. Hydrological Processes 16 (2002), 2941–2962. 34. Dupraz, C., Visscher, P.T., Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology 13 (2005), 429–438. 35. Dupraz, C., Visscher, P.T., Baumgartner, L.K., Reid, R.P., Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51 (2004), 745–765. 36. Dupraz, C., Reid, P.R., Braissant, O., Decho, A.W., Norman, R.S., Visscher, P.T., Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96 (2009), 141–162. 37. Energlin, Y., Brealey, L., Analytical Geochemistry. 1971, Elsevier, Amsterdam (417 pp.). 38. Fedak, S.I., Turkin, Y.A., Gusev, A.I., Shokalsky, S.P., Rusanov, G.G., Borisov, B.A., Belyaev, G.M., and Leontyeva, E.M., 2011. State geological map of the Russian federation. Scale 1:1000000. Third generation. Series: Altai-Sayan. Sheet M-45–Gorno-Altaisk. Explanatory note. St.Petersburg, VSEGEI 567 pp. (in Russian). 39. Feng, D., Chen, D., Peckmann, J., Rare earth elements in seep carbonate as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21 (2009), 49–56. 40. Fischbeck, R., Müller, G., Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite and calcite in speleothems of the Frankische Schweiz, western Germany. Contributions to Mineralogy and Petrolology 33 (1971), 87–92. 41. Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C., Discipulo, M.K., Depositional facies and aqueous-solid geochemistry of travertine depositing hot springs (Angel Terrace, Mammoth hot springs, Yellowstone national park, USA). Journal of Sedimentary Research 70 (2000), 565–585. 42. Frank, N., Braum, M., Hambach, U., Mangini, A., Wagner, G., Warm period growth of travertine during the last Interglaciation in southern Germany. Quaternary Research 54:1 (2000), 38–48. 43. Friedman, I., Some investigations on the deposition of travertine from Hot Springs. The isotopic chemistry of a travertine-depositing spring-I. Geochimica et Cosmochimica Acta 34 (1970), 1303–1315. 44. Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.W., Zhao, Z.-D., Hu, Y.-K., Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta 62 (1998), 1959–1975. 45. Garnett, E.R., Andrews, J.E., Preece, R.C., Dennis, P.F., Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science 19 (2004), 251–262. 46. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin, A., Van Den Haute, P., Vanhaecke, F., Elburg, M.A., Formation and Palaeozoic evolution of the Gorny–Altai–Altai–Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record. Gondwana Research 20:2–3 (2011), 465–484. 47. Gregersen, S., Earthquakes and change of stress since the ice age in Scandinavia. Bulletin of the Geological Society of Denmark 49 (2002), 73–78. 48. Hampel, A., Hetzel, R., Maniatis, G., Response of faults to climate-driven changes in ice and water volumes on Earth's surface. Philosophical Transactions of the Royal Society A 368 (2010), 2501–2517. 49. Hampel, A., Karow, T., Maniatis, G., Hetzel, R., Slip rate variation on faults during glacial loading and post-glacial unloading: implications for the viscosity structure of the lithosphere. Journal of the Geological Society of London 167 (2010), 385–399. 50. Hancock, P.L., Chalmers, R.M.L., Altunel, E., Ҫakir, Z., Travitonics: using travertines in active fault studies. Journal of Structural Geology 21 (1999), 903–916. 51. Ishigami, T., Suzuki, R., Factors affecting the crystalline form of calcareous sinters. Geochemistry. The Geochemical Society of Japan 11 (1977), 9–13. 52. Jeffery, P., Chemical Methods of Rock Analysis. 1970, Pergamon Press, Oxford (509 pp.). 53. Jones, B., Renaut, R.W., Calcareous spring deposits in continental settings. Alonso-Zarza, A.M., Tanner, L., (eds.) Chapter 4 in Carbonates in Continental Settings: Facies, Environments, and Processes, first ed., 2010, Elsevier, Amsterdam, 177–224. 54. Kanellopoulos, C., Distribution, lithotypes and mineralogical study of newly formed thermogenic travertines in Northern Euboea and Eastern Central Greece. Central European Journal of Geosciences 4 (2012), 545–560. 55. Kanellopoulos, C., Various morphological types of thermogenic travertines in Northern Euboea and Eastern Central Greece. Bulletin of the Geological Society of Greece XLVII 47 (2013), 1929–1938. 56. Kanellopoulos, C., Lamprinou, V., Mitropoulos, P., Voudouris, P., Thermogenic travertine deposits in Thermopylae hot springs (Greece) in association with cyanobacterial microflora. Carbonates and Evaporites 31:3 (2016), 239–248. 57. Khoury, H., Long-term analogue of carbonation in travertine from Uleimat Quarries, central Jordan. Environmental Earth Sciences 65 (2012), 1909–1916. 58. Khoury, H., Salameh, E., Clark, I., Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Applied Geochemistry 43 (2014), 49–65. 59. Kokh, S.N., Shnyukov, Y.F., Sokol, E.V., Novikova, S.A., Kozmenko, O.A., Semenova, D.V., Rybak, E.N., Heavy carbon travertine related to methane generation: a case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sedimentary Geology 325 (2015), 26–40. 60. Kondorskaya, N.V., Shebalin, N.V., (eds.) New Catalog of Strong Earthquakes in the USSR from Ancient Times though 1975, 1977, Nauka, Moscow (536 pp., in Russian). 61. Kukkonen, I.T., Olesen, O., Ask, M.V.S., the PFDP Working Group, Postglacial Faults in Fennoscandia: targets for scientific drilling. GFF 132 (2010), 71–81. 62. Lavrushin, V., Subsurface Fluids of the Greater Caucasus and Its Surroundings. 2012, GEOS, Moscow (348 pp., in Russian). 63. Le Pichon, X., Fournier, M., Jolivet, L., Kinematics, topography, shortening and extrusion in the India–Eurasia collision. Tectonics 11 (1992), 1085–1098. 64. Lojen, S., Dolenec, T., Vokal, B., Cukrov, N., Mihele'iæ, G., Papesch, W., C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia). Sedimentology 51 (2004), 361–375. 65. COHMAP Members, Climatic changes of the last 18 000 years: observations and model simulations. Science 241 (1988), 1041–1052. 66. Molnar, P., Tapponnier, P., Cenozoic tectonics of Asia: effects of a continental collision. Science 189 (1975), 419–426. 67. Muir Wood, R., Extraordinary deglaciation reverse faulting in northern Fennoscandia. Gregersen, S., Basham, P.W., (eds.) Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 1989, Kluwer Academic Publishers, Netherland, Dordrecht, 141–173. 68. Nevedrova, N.N., Epov, M.I., Antonov, E.Y., Dashevskii, Y.A., Duchkov, A.D., Deep structure of the Chuya basin (Gomy Altai) as imaged by TEM soundings. Russian Geology and Geophysics 42:9 (2001), 1399–1416. 69. Nevedrova, N.N., Deev, E.V., Sanchaa, A.M., Deep structure and margins of the Kurai Basin (Gorny Altai), from controlled-source resistivity data. Russian Geology and Geophysics 55:1 (2014), 98–107. 70. Nevedrova, N.N., Deev, E.V., Ponomarev, P.V., Fault structures and their geoelectric parameters in the epicentral zone of the 2003 Chuya earthquake (Gorny Altai) from resistivity data. Russian Geology and Geophysics 58:1 (2017), 1–10. 71. Okishev, P.A., Dynamics of the Glaciation of the Altai in the Late Pleistocene and Holocene. 1982, Tomsk University, Tomsk (209 pp.,in Russian). 72. Okumura, T., Takashima, Ch., Shiraishi, F., Akmaluddin, Kano, A., Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia. Sedimentary Geology 265–266 (2012), 195–209. 73. Olenchenko, V.V., Kozhevnikov, N.O., Antonov, E.Yu, Pospeeva, E.V., Potapov, V.V., Shein, A.N., Stefanenko, S.M., Distribution of permafrost in Chuiskaya Basin (Gorny Altai) according to transient electromagnetic soundings data. Earth's Cryosphere 15:1 (2011), 15–22 (in Russian). 74. Olesen, O., Blikra, L.H., Braathen, A., Dehls, J.F., Olsen, L., Rise, L., Roberts, D., Riis, F., Faleide, J.I., Anda, E., Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology 84 (2004), 3–34. 75. Pazdur, A., Pazdur, M.F., Starkel, L., Szulc, J., Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quaternary Research 30 (1988), 177–189. 76. Pedley, H.M., Rogerson, M., In vitro investigations of the impact of different temperature and flow velocity conditions on tufa microfabric. Geological Society, London, Special Publications 336 (2010), 193–210. 77. Pentecost, A., Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology 164 (1995), 263–278. 78. Pentecost, A., Travertine. 2005, Springer-Verlag, Berlin, Heidelberg (446 pp.). 79. Pentecost, A., Spiro, B., Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. Geomicrobiology Journal 8 (1990), 17–26. 80. Prentice, I.C., Guiot, J., Harrison, S.P., Mediterranean vegetation, lake level and paleoclimate at the last glacial maximum. Nature 360 (1992), 658–660. 81. Rainey, D.K., Jones, B., Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology 56 (2009), 1832–1857. 82. Reiff, W., Die Sauerwasserkalke von Stuttgart. Fundberichte aus Baden Württemberg 11 (1986), 2–24. 83. Rogozhin, E.A., Platonova, S.G., Strong Earthquake Focal Zones of Russian Altai in Holocene. 2002, UIPE, Moscow (130 pp., in Russian). 84. Rogozhin, E.A., Ovsyuchenko, A.N., Marakhanov, A.V., Ushanova, E.A., Tectonic setting and geological manifestations of the 2003 Altai earthquake. Geotectonics 41:2 (2007), 87–104. 85. Rogozhin, E.A., Ovsyuchenko, A.N., Marakhanov, A.V., Major earthquakes of the southern Gornyi Altai in the Holocene: Izvestiya. Physics of the Solid Earth 44:6 (2008), 469–486. 86. Rusanov, G.G., Deev, E.V., Ryapolova, Yu.M., Zolnikov, I.D., Paleohydrothermal activity of faults in the Gorny Altai based on travertine dating. Geology and mineral resources of Siberia 4:16 (2013), 53–64 (in Russian). 87. Shvartsev, S.L., Lepokurova, O.E., Kopylova, Yu.G., Geochemical mechanisms of travertine formation from fresh waters in southern Siberia. Russian Geology and Geophysics 48:8 (2007), 659–667. 88. Sidorenko, A.V., (eds.) Hydrogeology of the USSR. Volume XVII. Kemerovo and Altai Regions. Nedra, Moscow, 1972 (398 pp., in Russian). 89. Sokol, E., Kozmenko, O., Tomilenko, A., Sokol, I., Smirnov, S., Korzhova, S., Kokh, S., Ryazanova, T., Reutsky, V., Vapnik, Ye., Deyak, M., Geochemical assessment of hydrocarbons migration phenomena: case studies from the south-western margin of the Dead Sea Basin. Journal of Asian Earth Sciences 93 (2014), 211–228. 90. Taylor, S., McLennan, S., The Continental Crust: Its Composition and Evolution. 1985, Blackwell, Oxford (312 pp.). 91. Teboul, P.-A., Durlet, C., Gaucher, E.C., Virgone, A., Girard, J.-P., Curie, J., Lopez, B., Camoin, G.F., Origins of elements building travertine and tufa: new perspectives provided by isotopic and geochemical tracers. Sedimentary Geology 334 (2016), 97–114. 92. Udodov, P.A., Water Chemistry in the Kolyvan-Tom Fold Area. 1971, Tomsk University, Tomsk (283 pp., in Russian). 93. Visscher, P.T., Reid, R.P., Debout, B.M., Hoeft, S., Macinryre, I.G., Thompson, J.A. Jr., Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. American Mineralogist 83 (1998), 1482–1493. 94. Wang, Zh., Meyer, M.C., Hoffmann, D.L., Sedimentology, petrography and early diagenesis of a travertine–colluvium succession from Chusang (southern Tibet). Sedimentary Geology 342:1 (2016), 218–236. 95. Wu, Z., Barosh, P.J., Hu, D., Wu, Z., Peisheng, Y., Qisheng, L., Chunjing, Z., Migrating pingos in the permafrost region of the Tibetan Plateau, China and their hazard along the Golmud–Lhasa railway. Engineering Geology 79 (2005), 267–287. 96. Yin, A., Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488 (2010), 293–325. 97. Zolnikov, I.D., Deev, E.V., Kotler, S.A., Rusanov, G.G., Nazarov, D.V., New results of OSL dating of quaternary sediments in the Upper Katun’ valley (Gorny Altai) and adjacent area. Russian Geology and Geophysics 57:6 (2016), 933–943.