Инд. авторы: Goncharov A.F., Lobanov S.S., Prakapenka V.B., Greenberg E.
Заглавие: Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur
Библ. ссылка: Goncharov A.F., Lobanov S.S., Prakapenka V.B., Greenberg E. Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur // Physical Review B: Condensed Matter and Materials Physics. - 2017. - Vol.95. - Iss. 14. - Art.140101. - ISSN 1098-0121. - EISSN 1550-235X.
Внешние системы: DOI: 10.1103/PhysRevB.95.140101; РИНЦ: 29501601; SCOPUS: 2-s2.0-85017508001; WoS: 000399935600001;
Реферат: eng: Synchrotron x-ray diffraction and Raman spectroscopy have been used to study the chemical reactions of molecular hydrogen (H2) with sulfur (S) at high pressures. We find theoretically predicted Cccm and Im3m H3S to be the reaction products at 50 and 140 GPa, respectively. Im3m H3S is a stable crystalline phase above 140 GPa and it transforms to R3mH3S on pressure release below 140 GPa. The latter phase is (meta)stable down to at least 70 GPa where it transforms to Cccm H3S upon annealing (T<1300 K) to overcome the kinetic hindrance. Cccm H3S has an extended structure with symmetric hydrogen bonds at 50 GPa, and upon decompression it experiences a transformation to a molecular mixed H2S-H2 structure below 40 GPa without any apparent change in the crystal symmetry. © 2017 American Physical Society.
Ключевые слова: HYDRIDE; SUPERCONDUCTIVITY; H2S; ULTRAHIGH-PRESSURE; SULFIDE;
Издано: 2017
Физ. характеристика: 140101
Цитирование: 1. A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460. 2. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature (London) 525, 73 (2015). 10.1038/nature14964 3. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2014). 10.1038/srep06968 4. N. Bernstein, C.S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, Phys. Rev. B 91, 060511 (2015). 10.1103/PhysRevB.91.060511 5. D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Phys. Rev. B 91, 184511 (2015). 10.1103/PhysRevB.91.184511 6. Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, J. Chem. Phys. 140, 174712 (2014). 10.1063/1.4874158 7. A. P. Durajski, Sci. Rep. 6, 38570 (2016). 10.1038/srep38570 8. A. Bianconi and T. Jarlborg, Novel Supercond. Mater. 1, 37 (2015). 10.1515/nsm-2015-0006 9. J. E. Hirsch and F. Marsiglio, Physica C 511, 45 (2015). 10.1016/j.physc.2015.01.008 10. I. Troyan, A. Gavriliuk, R. Rüffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A. P. Drozdov, and M. I. Eremets, Science 351, 1303 (2016). 10.1126/science.aac8176 11. M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Nat. Phys. 12, 835 (2016). 10.1038/nphys3760 12. A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. -M. Zhao, X.-J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Phys. Rev. B 93, 174105 (2016). 10.1103/PhysRevB.93.174105 13. S. Duwal and C.-S. Yoo, J. Phys. Chem. C 120, 21770 (2016). 10.1021/acs.jpcc.6b06726 14. E. E. Gordon, K. Xu, H. Xiang, A. Bussmann-Holder, R. K. Kremer, A. Simon, J. Köhler, and M.-H. Whangbo, Ang. Chem. 55, 3682 (2016). 10.1002/anie.201511347 15. Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Phys. Rev. B 93, 020103 (2016). 10.1103/PhysRevB.93.020103 16. R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, Phys. Rev. B 91, 224513 (2015). 10.1103/PhysRevB.91.224513 17. B. Guigue, A. Marizy, and P. Loubeyre, Phys. Rev. B 95, 020104 (2017). 10.1103/PhysRevB.95.020104 18. D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, Phys. Rev. B 91, 180502 (2015). 10.1103/PhysRevB.91.180502 19. J. A. Flores-Livas, A. Sanna, and E. K. U. Gross, Eur. Phys. J. B 89, 63 (2016). 10.1140/epjb/e2016-70020-0 20. I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Phys. Rev. Lett. 114, 157004 (2015). 10.1103/PhysRevLett.114.157004 21. V. V. Struzhkin, D. Y. Kim, E. Stavrou, T. Muramatsu, H.-K. Mao, C. J. Pickard, R. J. Needs, V. B. Prakapenka, and A. F. Goncharov, Nat. Commun. 7, 12267 (2016). 10.1038/ncomms12267 22. V. B. Prakapenka, A. Kubo, A. Kuznetsov, A. Laskin, O. Shkurikhin, P. Dera, M. L. Rivers, and S. R. Sutton, High Press. Res. 28, 225 (2008). 10.1080/08957950802050718 23. Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, Proc. Natl. Acad. Sci. USA 104, 9182 (2007). 10.1073/pnas.0609013104 24. Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043516 (2006). 10.1063/1.2335683 25. H.-K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994). 10.1103/RevModPhys.66.671 26. R. Akashi, W. Sano, R. Arita, and S. Tsuneyuki, Phys. Rev. Lett. 117, 075503 (2016). 10.1103/PhysRevLett.117.075503 27. I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Nature (London) 532, 81 (2016). 10.1038/nature17175 28. T. A. Strobel, P. Ganesh, M. Somayazulu, P. R. C. Kent, and R. J. Hemley, Phys. Rev. Lett. 107, 255503 (2011). 10.1103/PhysRevLett.107.255503 29. A. F. Goncharov, V. V. Struzhkin, H.-K. Mao, and R. J. Hemley, Phys. Rev. Lett. 83, 1998 (1999). 10.1103/PhysRevLett.83.1998