Инд. авторы: Grigoryev Y.N., Ershov I.V.
Заглавие: Dissipation of the Kelvin–Helmholts waves in a relaxing molecular gas
Библ. ссылка: Grigoryev Y.N., Ershov I.V. Dissipation of the Kelvin–Helmholts waves in a relaxing molecular gas // Fluid Mechanics and its Applications. - 2017. - Vol.117. - P.171-198. - ISSN 0926-5112.
Внешние системы: DOI: 10.1007/978-3-319-55360-3_7; РИНЦ: 29498606; SCOPUS: 2-s2.0-85017460356; WoS: 000424706100009;
Реферат: eng: This chapter presents the results of numerical simulations of the full cycle of evolution of the Kelvin -Helmholtz instability, which adequately reproduce the local mechanism of turbulization of the free shear flow. The problem is considered both within the frameworks of the Navier-Stokes equations for a moderate level of thermal nonequilibrium and using the full system of equations of two-temperature aerodynamics for a vibrationally excited gas. Plane waves preliminary calculated by numerical solution of appropriate linearized systems of inviscid gas-dynamic equations are used as initial perturbations. The known pattern of the evolution of the “cat’s-eye” large-scale vortex structure typical for the emergence and development of inertial instability is reproduced in detail. The calculated results show the enhancement of dissipation of the kinetic energy of the structure on a background of relaxation process. © Springer International Publishing AG 2017.
Ключевые слова: LAYER;
Издано: 2017
Физ. характеристика: с.171-198
Цитирование: 1. Blumen, W.: Shear layer instability of an inviscid compressible fluid. J. Fluid Mech. 40, 769–781 (1970) 2. Kovenya, V.M., Yanenko, N.N.: Splitting Method in Problems of Gas Dynamics. Nauka, Novosibirsk (1981) (in Russian) 3. Grigor’ev, Yu N, Ershov, I.V., Zyryanov, K.V., Sinyaya, A.V.: Numerical simulation of the bulk viscosity effect on a sequence of nested grids. Vych. Tekhnol. 11, 36–49 (2006) (in Russian) 4. Kvasov, B.I.: Interpolation by Cubic and Bicubic Splines. Novosibirsk State University Publication, Novosibirsk (2004) (in Russian) 5. Betchov, R., Criminale, W.O.: Stability of Parallel Flows. Academic Press, New York (1967) 6. Patnaik, P.C., Sherman, F.S., Corcos, G.M.: A numerical simulation of Kelvin–Helmholtz waves of finite amplitude. J. Fluid Mech. 73, 215–239 (1976) 7. Corcos, G.M., Sherman, F.S.: The mixing layer deterministic models of a turbulent flow. Part I. Introduction and two-dimensional flow. J. Fluid Mech. 139, 29–65 (1984) 8. Stepanov, V.V.: Course of Differential Equations. Fizmatlit, Moscow (1959) (in Russian) 9. Grigor’ev, Yu N, Ershov, I.V.: Relaxation-induced suppression of vortex disturbances in a molecular gas. J. Appl. Mech. Tech. Phys. 44, 471–481 (2003) 10. Grigor’ev Yu N, Ershov, I.V., Zyryanov, K.V.: Numerical modeling of Kelvin–Helmholtz waves in a weakly nonequilibriummolecular gas. Vych. Tekhnol. 13, 25–40 (2008) (inRussian) 11. Osipov, A.I., Uvarov, A.V.: Kinetic and gas-dynamic processes in nonequilibrium molecular physics. Usp. Fiz. Nauk 162, 1–42 (1992) (in Russian) 12. Grigor’ev, Yu N, Ershov, I.V., Zyryanov, K.V.: Numerical modeling of inertial instability in a vibrationally nonequilibrium diatomic gas. Vych. Tekhnol. 15, 42–57 (2010) (in Russian) 13. Vinnichenko, N.A., Nikitin, N.V., Uvarov, A.V.: Karman vortex street in a vibrationally nonequilibrium gas. Fluid Dyn. 40, 762–768 (2005) 14. Grigor’ev, Yu N, Ershov, I.V., Ershova, E.E.: Influence of vibrational relaxation on the pulsation activity in flows of an excited diatomic gas. J. Appl. Mech. Tech. Phys. 45, 321–327 (2004) 15. Savill, A.M.: Drag reduction by passive devices -a review of some recent developments. In: Gyr, A. (ed.) Structure of Turbulence andDragReduction, pp. 429–465. Springer, Berlin (1990)