Инд. авторы: | Grigoryev Y.N., Ershov I.V. |
Заглавие: | Linear stability of inviscid plane-parallel flows of vibrationally excited diatomic gases |
Библ. ссылка: | Grigoryev Y.N., Ershov I.V. Linear stability of inviscid plane-parallel flows of vibrationally excited diatomic gases // Fluid Mechanics and its Applications. - 2017. - Vol.117. - P.35-49. - ISSN 0926-5112. |
Внешние системы: | DOI: 10.1007/978-3-319-55360-3_2; РИНЦ: 29490497; SCOPUS: 2-s2.0-85017467820; WoS: 000424706100004; |
Реферат: | eng: This chapter is devoted to investigations of linear stability of plane-parallel flows of an inviscid nonheat-conducting vibrationally excited gas. Some classical results of the theory of linear stability of ideal gas flows, such as the first and second Rayleigh’s theorems and Howard’s theorem, are generalized. An equation of the energy balance of disturbances is derived, which shows that vibrational relaxation generates an additional dissipative factor,which enhances flowstability. Calculations of the most unstable inviscid modes with the maximum growth rates in a free shear layer are described. It is shown that enhancement of excitation of vibrational modes leads to reduction of the growth rates of inviscid disturbances. © Springer International Publishing AG 2017. |
Ключевые слова: | INSTABILITY; |
Издано: | 2017 |
Физ. характеристика: | с.35-49 |
Цитирование: | 1. Drazin, P.G., Howard, L.N.: Hydrodynamic stability of parallel flowof inviscid fluid. In:Chernyi, G.G., et al. (eds.) Advances in AppliedMechanics, vol. 9, pp. 1-89. Academic Press, New York (1996) 2. Zhdanov, V.M., Aliyevskii, M.Ya.: Transfer and Relaxation Processes in Molecular Gases. Nauka, Moscow (1989) (in Russian) 3. Nagnibeda, E.A., Kustova, E.V.:Non-equilibrium ReactingGas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009) 4. Grigor’ev, Yu.N., Ershov, I.V.: Stability of Flows of Relaxing Molecular Gases. Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2012) (in Russian) 5. Blumen, W.: Shear layer instability of an inviscid compressible fluid. J. FluidMech. 40, 769-781 (1970) 6. Joseph, D.D.: Stability of Fluid Motion. Springer, Berlin (1976) 7. Michalke, A.: On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19, 543-556 (1964) 8. Howard, L.N.: Note on a paper of John W Miles. J. Fluid Mech. 10, 509-512 (1961) |