Цитирование: | 1. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)
2. Romanov, V.A.: Stability of a plane-parallel Couette flow. Dokl. Akad. Nauk SSSR 196, 1049-1051 (1971) (in Russian)
3. Gol’dshtik, M.A., Shtern, V.N.: Hydrodynamic Stability and Turbulence. Nauka, Novosibirsk (1977) (in Russian)
4. Joseph, D.D.: Stability of Fluid Motion. Springer, Berlin (1976)
5. Hanifi, A., Henningson, D.S.: The compressible inviscid algebraic instability for streamwise independent disturbances. Phys. Fluids 10, 1784-1786 (1998)
6. Duck, P.W., Erlebacher, G., Hussaini, M.Y.: On the linear stability of compressible plane Couette flow. J. Fluid Mech. 258, 131-165 (1994)
7. Hu, S., Zhong, X.: Linear stability of viscous supersonic plane Couette flow. Phys. Fluids 10, 709-729 (1998)
8. Malik, M., Dey, J., Alam, M.: Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow. Phys. Rev. E 77, 036322(15) (2008)
9. Lin, C.C.: The Theory of Hydrodynamic Stability. University Press, New York (1966)
10. Nagnibeda, E.A., Kustova, E.V.: Non-equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009)
11. Grigor’ev, Yu.N., Ershov, I.V.: Stability of Flows of Relaxing Molecular Gases. Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2012) (in Russian)
12. Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North Holland Publ. Comp, Amsterdam (1972)
13. Grigor’ev, Yu.N., Yershov, I.V.: Linear stability of an inviscid shear flow of a vibrationally excited diatomic Gas. J. Appl. Math. Mech. 75, 410-418 (2011)
14. Blumen, W.: Shear layer instability of an inviscid compressibled fluid. J. Fluid Mech. 40, 769-781 (1970)
15. Drazin, P.G., Howard, L.N.: Hydrodynamic stability of parallel flow of inviscid fluid. In: Chernyi, G.G. et al. (Eds.) Advance in Applied Mechanics, vol. 9, pp. 1-89. Academic Press, New York (1996)
16. Howard, L.N.: Note on a paper of John W. Miles. J. Fluid Mech. 10, 509-512 (1961)
17. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)
18. Trefethen, L.N.: SpectralMethods in Matlab. Society for Industrial and AppliedMathematics. SIAM, Philadelphia (2000)
19. Grigor’ev, Yu. N., Ershov, I.V.: Energy estimate of the critical Reynolds numbers in a compressible Couette flow. Effect of bulk viscosity. J. Appl.Mech. Tech. Phys. 51, 669-675 (2010)
20. Grigor’ev, Yu. N., Ershov, I.V.: Critical Reynolds number of the Couette flow in a vibrationally excited diatomic gas. Energy approach. J. Appl. Mech. Tech. Phys. 53, 517-531 (2012)
21. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)
22. Michalke, A.: On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19, 543-556 (1964)
23. Morawetz, C.S.: The eigenvalues of some stability problems involving viscosity. J. Rat. Mech. Anal. 1, 79-603 (1952)
24. Mack, L.M.: On the inviscid acoustic-mode instability of supersonic shear flows. Part I: twodimensional waves. Theor. Comput. Fluid Dyn. 2, 97-123 (1990)
25. Grigor’ev, Yu. N., Ershov, I.V.: Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem. J. Appl. Mech. Tech. Phys. 55, 258-269 (2014)
26. Gaponov, S.A., Maslov, A.A.: Development of Perturbations in Compressible Flows. Nauka, Novosibirsk (1980) (in Russian)
|