Инд. авторы: Grigoryev Y.N., Ershov I.V.
Заглавие: Physico-mathematical models of relaxing molecular gas flows
Библ. ссылка: Grigoryev Y.N., Ershov I.V. Physico-mathematical models of relaxing molecular gas flows // Fluid Mechanics and its Applications. - 2017. - Vol.117. - P.1-34. - ISSN 0926-5112.
Внешние системы: DOI: 10.1007/978-3-319-55360-3_1; РИНЦ: 29500478; SCOPUS: 2-s2.0-85017442264; WoS: 000424706100003;
Реферат: eng: The chapter has an introductory character and provides some auxiliary material to give an idea of notions and results of physical kinetics, kinetic theory, and acoustics ofmolecular gases, which are used in the book. Themain goal of this chapter is to demonstrate the feasibility and adequacy of physical and mathematical models used in the authors’ researches. In particular the evolution of the concept of bulk viscosity in mechanics and kinetic theory of gases is briefly described. Qualitative properties of the Landau-Teller relaxation equation for the vibrational mode energy, which plays a key role in subsequent considerations, are discussed. The physical mechanism of dissipation of acoustic waves on the background of the relaxation process in a thermally nonequilibrium molecular gas is explained. © Springer International Publishing AG 2017.
Ключевые слова: ROUGH SPHERES; LOADED SPHERES; TRANSPORT-PROPERTIES; NONSPHERICAL MOLECULES; ULTRASONIC DETERMINATION; VISCOSITY; ROTATIONAL RELAXATION; VIBRATIONAL RELAXATION; KINETIC-THEORY; DIATOMIC GASES;
Издано: 2017
Физ. характеристика: с.1-34
Цитирование: 1. Gordiets, B.F., Osipov, A.I., Shelepin, L.A.: Kinetic Processes in Gases and Molecular Lasers. Gordon and Breach, New York (1987) 2. Losev, S.A.: Gasdynamic Laser. Springer, Berlin (1981) 3. Stupochenko, E.V., Losev, S.A., Osipov, A.I.: Relaxation Processes in Shock Waves. Nauka, Moscow (1965) (in Russian) 4. Nagnibeda, E.A., Kustova, E.V.: Non-equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009) 5. Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North Holland Publishing Company, Amsterdam (1972) 6. Zhdanov, V.M., Aliyevskii, M.Ya.: Transfer and Relaxation Processes in Molecular Gases. Nauka, Moscow (1989) (in Russian) 7. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969) 8. Zeldovich, Ya. B., Raizer, Yu.P.: Physics of ShockWaves andHigh-TemperatureHydrodynamic Phenomena. Academic Press, New York (1967) 9. Leontovoich, M.A.: Remarks on the theory of sound attenuation in gases. Zh. Éksp. Teor. Fiz. 6, 561–576 (1936) (in Russian) 10. Leontovoich, M.A.: Some questions in the theory of sound absorption polyatomic gases. Izv. Akad. Nauk SSSR. Ser. Fizika 5, 633–636 (1936) (in Russian) 11. Schwartz, R.N., Slawsky, Z.I., Herzfeld, K.F.: Calculation of vibrational relaxation times in gases. J. Chem. Phys. 20, 1591–1599 (1952) 12. Gordiets, B.F., Zhdanok, S.: Analytical theory of vibrational kinetics of anharmonic oscillators. In: Capitelli, M. (ed.) Nonequilibrium Vibrational Kinetics. Series Topics in Current Physics, vol. 39, pp. 47–84. Springer, Berlin (1986) 13. Brun, R., Zappoli, B.: Model equations for a vibrationally relaxing gas. Phys. Fluids 20, 1441–1448 (1977) 14. Vincenti, W.G., Kruger, Ch.H.: Introduction to Physical Gas Dynamics. Krieger, Huntington (1975) 15. Landau, L., Teller, E.:On the theory of sound dispersion. In: Ter Haar,D. (ed.) Collected Papers of L.D. Landau, pp. 147–153. Pergamon Press, Oxford (1965) 16. Kustova, E.V., Oblapenko, G.V.: Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows. Phys. Fluids 27, 016102 (2015) 17. Kochin, N.E., Kibel, I.A., Rose, N.V.: Theoretical Hydromechanics. Part 2. Fizmatgiz, Moscow (1963) (in Russian) 18. Meador, W.E., Miner, G., Townsend, I.W.: Bulk viscosity as relaxation parameter: fact or fiction? Phys. Fluids 8, 258–261 (1996) 19. Rosenhead, L., et al.: A discussion on the first and second viscosities. Proc. R. Soc. A. 226, 1–69 (1954) 20. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932) 21. Truesdell, C.: On the viscosity of fluids according to the kinetic theory. Zeitsch. Phys. 131, 273–289 (1952) 22. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1952) 23. Kohler, M.: Reibung in mabig verdunnten gasen als folge verzogerte einstellung der energie. Zeitsch. Phys. 125, 715–732 (1949) 24. Prangsma, G.J., Alberga, A.H., Beenakker, J.J.M.: Ultrasonic determination of the volume viscosity of N2, CO, CH4, CO2 between 77 and 3000 K. Physica 64, 278–288 (1973) 25. Greenspan, M.: Rotational relaxation in nitrogen, oxygen and air. J. Acoust. Soc. Am. 31, 155–160 (1959) 26. Monchick, L., Yun, K.S., Mason, E.A.: Relaxation effects in the transport properties of rough spheres. J. Chem. Phys. 38, 1282–1287 (1963) 27. Condiff, D.W., Lu, W.K., Dahler, J.S.: Transport properties of polyatomic fluids. A dilute gas of perfectly rough spheres. J. Chem. Phys. 42, 3445–3475 (1965) 28. Hirschfelder, J.O., Curtiss, Ch. F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954) 29. Jeans, J.H.: The distribution of molecular energy. Philos. Trans. R. Soc. 68, 175–253 (1901) 30. Dahler, J.S., Satcher, N.F.:Kinetic theory of loaded molecules, I. J. Chem. Phys. 38, 2363–2382 (1963) 31. Sandler, S.I., Dahler, J.S.: Kinetic theory of loadedmolecules, II. J. Chem. Phys. 43, 1750–1759 (1965) 32. Curtiss, C.F., Dahler, J.S.: Kinetic theory of nonspherical molecules. J. Chem. Phys. 24, 2425–2441 (1956) 33. Curtiss, C.F., Muckenfuss, C.: Kinetic theory of nonspherical molecules, II. J. Chem. Phys. 26, 1619–1636 (1957) 34. Curtiss, C.F., Dahler, J.S.: Kinetic theory of nonspherical molecules, V. J. Chem. Phys. 38, 2352–2362 (1963) 35. Parbrook, H.D., Tempest, W.: Sound absorption in nitrogen and oxygen. Acustica 8, 345–348 (1958) 36. Carnevale, E.H., Carey, C., Larson, G.: Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gasses at high temperatures. J. Chem. Phys. 47, 2829–2844 (1967) 37. Parker, J.G.: Rotational and vibrational relaxation in diatomic gases. Phys. Fluids 2, 449–461 (1959) 38. Brau, C.A., Johnkman, K.H.: Classical theory of rotational relaxation in diatomic gases. J. Chem. Phys. 52, 477–484 (1970) 39. Gerasimov, G.Ya., Makarov, V.N.: Theory of rotational relaxation in a diatomic gas. J. Appl. Mech. Tech. Phys. 16, 8–12 (1975) 40. Lordi, J.A., Mater, R.E.: Rotational relaxation in nonpolar diatomic gases. Phys. Fluids 13, 291–308 (1970) 41. Grigor’ev, I.S., Meilikhov, E.Z. (eds.): Physical Quantities, Handbook. Énergoatomizdat, Moscow (1991) (in Russian) 42. Kikoin, I.K. (ed.): Tables of Physical Quantities, Handbook. Atomizdat, Moscow (1976) (in Russian) 43. Kaye, G.W., Laby, T.H.: Tables of Physical and Chemical Constants. Longmans, Green & Co., London (1958) 44. Kustova, E.V., Nagnibeda, E.A.: The influence of non-Boltzman vibrational distribution on thermal conductivity and viscosity. In: Capitelli, M. (ed.) Molecular Physics and Hypersonic Flows, pp. 383–392. Kluwer Academic Publishers, Dordrecht (1996) 45. Kustova, E.V.: Kinetic model of molecular gas dynamics in strongly non-equilibrium conditions. Vestn. S.-Peterb. Univ. Ser. 1(9), 60–65 (1995) (in Russian) 46. Kustova, E.V., Nagnibeda, E.A.: Strong non-equilibrium effects on specific heats and thermal conductivity of diatomic gas. Chem. Phys. 208, 313–329 (1996) 47. Millikan, R.C., White, D.R.: Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209–3213 (1963) 48. Mack, L.M.: On the inviscid acoustic-mode instability of supersonic shear flows. Part I: twodimensional waves. Theor. Comput. Fluid Dyn. 2, 97–123 (1990) 49. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961) 50. Shpakovsky, B.G.: The dispersion and selective absorption of ultrasonic waves in a monatomic gas. Usp. Fiz. Nauk 14, 283–297 (1934) (in Russian)