Цитирование: | 1. [1] Matvienko, Yu.G., Models and criteria of fracture mechanics. 2006, PhysMatLit, Moskow 328 p. [in Russian].
2. [2] He, Z., Kotousov, A., Berto, F., Branco, R., A brief review of recent three-dimensional studies of brittle fracture. Phys Mesomech 19:1 (2016), 6–20.
3. [3] Kotousov, A., Effect of a thin plastic adhesive layer on the stress singularities in a bi-material wedge. Int J Adhes Adhes 27:8 (2007), 647–652.
4. [4] Lazzarin, P., Tovo, R., A notch intensity approach to the stress analysis of welds. Fatigue Fract Eng Mater Struct 21:9 (1998), 1089–1104.
5. [5] Lazzarin, P., Livieri, P., Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. Int J Fatigue 23:3 (2001), 225–232.
6. [6] Berto, F., Lazzarin, P., Kotousov, A., On higher order terms and out-of-plane singular mode. Mech Mater 43:6 (2011), 332–341.
7. [7] Berto, F., Lazzarin, P., Kotousov, A., On the presence of the out-of-plane singular mode induced by plane loading with KII=KI=0. Int J Fract 167:1 (2011), 119–126.
8. [8] Kotousov, A., Lazzarin, P., Berto, F., Pook, L.P., Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Eng Fract Mech 108 (2013), 65–74.
9. [9] Kotousov A, He Z, Gardeazabal D. On scaling of brittle fracture. In: Proc 8th int conf on structural integrity and fracture. Melbourne, Australia; 2013. p. 93–6.
10. [10] Pook, L.P., A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue Fract Eng Mater Struct 36:8 (2013), 699–723.
11. [11] Pook, L.P., Five decades of crack path research. Eng Fract Mech 77:11 (2010), 1619–1630.
12. [12] Berto, F., Lazzarin, P., Kotousov, A., Harding, S., Out-of-plane singular stress fields in v-notched plates and welded lap joints induced by in-plane shear load conditions. Fatigue Fract Eng Mater Struct 34:4 (2011), 291–304.
13. [13] Berto, F., Lazzarin, P., Kotousov, A., Pook, L.P., Induced out-of-plane mode at the tip of blunt lateral notches and holes under in-plane shear loading. Fatigue Fract Eng Mater Struct 35:6 (2012), 538–555.
14. [14] He, Z., Kotousov, A., Branco, R., A simplified method for the evaluation of fatigue crack front shapes under mode I loading. Int J Fract 188:2 (2014), 203–211.
15. [15] He, Z., Kotousov, A., Fanciulli, A., Berto, F., An experimental method for evaluating mode II stress intensity factor from near crack tip field. Int J Fract 197:1 (2015), 119–126.
16. [16] He, Z., Kotousov, A., Berto, F., Effect of vertex singularities on stress intensities near plate free surfaces. Fatigue Fract Eng Mater Struct 38:7 (2015), 860–869.
17. [17] He, Z., Kotousov, A., Fanciulli, A., Berto, F., Nguyen, G., On the evaluation of stress intensity factor from displacement field affected by 3D corner singularity. Int J Solids Struct 78–79 (2016), 131–137.
18. [18] Bažant, Z.P., Size effect on structural strength: a review. Arch Appl Mech 69:9–10 (1999), 703–725.
19. [19] Bažant, Z.P., Size effect. Int J Solids Struct 37:1–2 (2000), 69–80.
20. [20] Cherny, S., Chirkov, D., Lapin, V., Muranov, A., Bannikov, D., Miller, M., et al. Two-dimensional modeling of the near-wellbore fracture tortuosity effect. Int J Rock Mech Min Sci 46:6 (2009), 992–1000.
21. [21] Aidagulov G, Alekseenko O, Chang F, Bartko K, Cherny S, Esipov D, et al. Model of hydraulic fracture initiation from the notched openhole. In: Proceedings of the 2015 annual technical symposium & exhibition. Al Khobar, Saudi Arabia. SPE-178027-MS; 2015. p. 1–12.
22. [22] Daneshy, A., Horizontal well fracturing: a state-of-the-art report. World Oil, 234(7), 2013.
23. [23] Fallahzadeh SAH, Shadizadeh SR, Pourafshary P. Dealing with the challenges of hydraulic fracture initiation in deviated-cased perforated boreholes. In: Trinidad and Tobago energy resources conference. SPE-132797-MS; 2010.
24. [24] Hossain, M.M., Rahman, M.K., Rahman, S.S., Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. J Petrol Sci Eng 27:3–4 (2000), 129–149.
25. [25] Crosby, D.G., Rahman, M.M., Rahman, M.K., Rahman, S.S., Single and multiple transverse fracture initiation from horizontal wells. J Petrol Sci Eng 35:3–4 (2002), 191–204.
26. [26] Huang, J., Griffiths, D.V., Wong, S.W., Initiation pressure location and orientation of hydraulic fracture. Int J Rock Mech Min Sci 49 (2012), 59–67.
27. [27] Rabold, F., Kuna, M., Automated finite element simulation of fatigue crack growth in three-dimensional structures with the software system procrack. Procedia Mater Sci 3 (2014), 1099–1104.
28. [28] Morris A, Ing T. Using abaqus cracktip submodels to investigate cracking in conventional power generation plant. In: SIMULIA customer conference; 2009.
29. [29] Brebbia, C.A., Telles, J.C.F., Wrobel, L.C., Boundary element techniques. Theory and applications in engineering, 1984, Springer-Verlag, Berlin, Heidelberg.
30. [30] Banerjee, P.K., Butterfield, R., Boundary element methods in engineering science. 1981, McGraw-Hill, London 452 p.
31. [31] Alekseenko OP, Potapenko DI, Cherny SG, Esipov DV, Kuranakov DS, Lapin VN. 3-D modeling of fracture initiation from perforated non-cemented wellbore. In: SPE hydraulic fracturing technology conference. The Woodlands, Texas. SPE-151585-PA; 2012. p. 1–16.
32. [32] Alekseenko, O.P., Potapenko, D.I., Cherny, S.G., Esipov, D.V., Kuranakov, D.S., Lapin, V.N., 3D modeling of fracture initiation from perforated noncemented wellbore. SPE J 18:3 (2013), 589–600.
33. [33] Briner A, Florez JC, Nadezhdin S, Alekseenko O, Gurmen N, Cherny S, et al. Impact of perforation tunnel orientation and length in horizontal wellbores on fracture initiation pressure in maximum tensile stress criterion model for tight gas fields in the Sultanate of Oman. In: SPE middle east oil & gas show and conference, Manama, Bahrain. SPE-172663-MS; 2015.
34. [34] Rankine, W., A manual of applied mechanics. 1857, Richard Griffin and Company, London, Glasgow 640 p.
35. [35] Saint-Venant, B., Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides ductiles au-delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Acad Sci 80:10 (1870), 473–480.
36. [36] Tresca, H., Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C R Acad Sci 59 (1864), 754–758.
37. [37] Coulomb, C.A., Sur une application des régles de maximis et minimis à quelques problémes de statique: relatifs à l'architecture. Mem Acad Roy Div Sav 7 (1773), 343–387.
38. [38] Mohr, O., Welche umstände bedingen die elastizitätsgrenze und den bruch eines materiales?. Z Vereines Deutscher Ingenieure 44 (1900), 1524–1530.
39. [39] Drucker, D.C., Prager, W., Soil mechanics and plastic analysis for limit design. Quart Appl Math 10:2 (1952), 157–165.
40. [40] You, M., Discussion on “A generalized three-dimensional failure criterion for rock masses”. J Rock Mech Geotech Eng 5:5 (2013), 412–416.
41. [41] Griffith, A.A., The phenomena of rupture and flow in solids. Phylosoph Trans Roy Soc London. Ser A, Containing Papers Math Phys Charact 221 (1921), 163–198.
42. [42] Irwin, G., Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24 (1957), 361–364.
43. [43] Sammis, C.G., Ashby, M.F., The failure of brittle porous solids under compressive stress states. Acta Metall 34:3 (1986), 511–526.
44. [44] Carter, B.J., Size and stress gradient effects on fracture around cavities. Rock Mech Rock Eng 25:3 (1992), 167–186.
45. [45] Ingraffea, A.R., Theory of crack initiation and propagation of rock structures. Atkinson, B.K., (eds.) Fracture mechanics of rock, 1987, Academic Press, London, 71–110.
46. [46] Pais M, Kim N-H, Davis T. Reanalysis of the extended finite element method for crack initiation and propagation. In: AIAA SDM student symposium; 2010.
47. [47] Dugdale, D.S., Yielding of steel sheets containing slits. J Mech Phys Solids 8:2 (1960), 100–104.
48. [48] Barenblatt, G.I., The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, vol. 7, 1962, Elsevier, 55–129.
49. [49] Rice, J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:2 (1968), 379–386.
50. [50] Atkinson, B.K., (eds.) Fracture mechanics of rock Academic press geology series, 1987, Academic Press.
51. [51] Scheider, I., Brocks, W., The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Eng Mater 251 (2003), 313–318.
52. [52] Tvergaard, V., Hutchinson, J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:6 (1992), 1377–1397.
53. [53] Needleman, A., A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:3 (1987), 525–531.
54. [54] Cornec, A., Scheider, I., Schwalbe, K.-H., On the practical application of the cohesive model. Eng Fract Mech 70:14 (2003), 1963–1987.
55. [55] Schwalbe, K.-H., Cornec, A., Modeling crack growth using local process zones. 1994, GKSS Research Centre, Geethacht, Germany.
56. [56] Ortiz, M., Suresh, S., Statistical properties of residual stresses and intergranular fracture in ceramic materials. J Appl Mech, 60(1), 1993, 77.
57. [57] Camacho, G.T., Ortiz, M., Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:20–22 (1996), 2899–2938.
58. [58] Geubelle, P.H., Baylor, J.S., Impact-induced delamination of composites: a 2D simulation. Compos Part B: Eng 29:5 (1998), 589–602.
59. [59] Xu, X.-P., Needleman, A., Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:9 (1994), 1397–1434.
60. [60] Ortiz, M., Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:9 (1999), 1267–1282.
61. [61] Roy, Y.A., Dodds, R.H. Jr., Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements. Int J Fract 110:1 (2001), 21–45.
62. [62] Qiu, Y., Crisfield, M.A., Alfano, G., An interface element formulation for the simulation of delamination with buckling. Eng Fract Mech 68:16 (2001), 1755–1776.
63. [63] Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Williams, J.G., The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119:1 (2003), 25–46.
64. [64] Turon, A., Camanho, P.P., Costa, J., Dávila, C.G., A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:11 (2006), 1072–1089.
65. [65] Chen, C.R., Kolednik, O., Comparison of cohesive zone parameters and crack tip stress states between two different specimen types. Int J Fract 132:2 (2005), 135–152.
66. [66] Nilsson, F., A tentative method for determination of cohesive zone properties in soft materials. Int J Fract 136:1–4 (2005), 133–142.
67. [67] Xia, L., Shih, S.F., Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales. J Mech Phys Solids 43:2 (1995), 233–259.
68. [68] Xia, L., Shih, S.F., Ductile crack growth-II. Void nucleation and geometry effects on macroscopic fracture behavior. J Mech Phys Solids 43:12 (1995), 1953–1981.
69. [69] Tvergaard, V., Hutchinson, J.W., Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct 33:20–22 (1996), 3297–3308.
70. [70] Siegmund, T., Brocks, W., Prediction of the work of separation and implications to modeling. Int J Fract 99:1 (1999), 97–116.
71. [71] Tvergaard, V., Crack growth predictions by cohesive zone model for ductile fracture. J Mech Phys Solids 49:9 (2001), 2191–2207.
72. [72] Kyaw, P.-E., Tanner, D.W.J., Becker, A.A., Sun, W., Tsang, D.K.L., Modelling crack growth within graphite bricks due to irradiation and radiolytic oxidation. Procedia Mater Sci 3 (2014), 39–44.
73. [73] García IG, Paggi M, Mantič V. Comparison of the size effect predicted by a cohesive zone model and the finite fracture mechanics for the fiber-matrix debonding. In: Proc 16th European conference on composite materials (ECCM), Seville, Spain; 2014.
74. [74] Neuber, H., Kerbspannungslehre grundlagen fur genaue spannungsrechnung. 1937, Springer-Verlag, Berlin, Heidelberg.
75. [75] Lin'kov, A.M., Loss of stability, characteristic length, and Novozhilov-Neuber criterion in fracture mechanics. Mech Solids 45:6 (2010), 844–855.
76. [76] Novozhilov, V.V., On a necessary and sufficient criterion for brittle strength. J Appl Math Mech 33:2 (1969), 201–210.
77. [77] Whitney, J.M., Nuismer, R.J., Stress fracture criteria for laminated composites containing stress concentrations. J Compos Mater 8:3 (1974), 253–265.
78. [78] Nuismer RJ, Whitney JM. Uniaxial failure of composite laminates containing stress concentrations. In: Fract Mech Compos, number STP 593. ASTM; 1975. p. 117–142.
79. [79] Taylor, D., Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21:5 (1999), 413–420.
80. [80] Taylor, D., Bologna, P., Bel Knani, K., Prediction of fatigue failure location on a component using a critical distance method. Int J Fatigue 22:9 (2000), 735–742.
81. [81] Taylor, D., The theory of critical distances: a new perspective in fracture mechanics. 2007, Elsevier.
82. [82] Susmel, L., Taylor, D., The theory of critical distances to predict static strength of notched brittle components subjected to mixed-mode loading. Eng Fract Mech 75:3–4 (2008), 534–550.
83. [83] Lajtai, E.Z., Effect of tensile stress gradient on brittle fracture initiation. Int J Rock Mech Min Sci Geomech Abstr 9:5 (1972), 569–578.
84. [84] Berto, F., Lazzarin, P., Gómez, F.J., Elices, M., Fracture assessment of U-notches under mixed mode loading: two procedures based on the ‘equivalent local mode I’ concept. Int J Fract 148:4 (2007), 415–433.
85. [85] Chang FF, Bartko K, Dyer S, Aidagulov G, Suarez-Rivera R, Lund J. Multiple fracture initiation in openhole without mechanical isolation: first step to fulfill an ambition. In: SPE hydraulic fracturing technology conference. SPE-168638-MS; 2014. p. 1–18.
86. [86] Ito, T., Hayashi, K., Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int J Rock Mech Min Sci Geomech Abstr 28:4 (1991), 285–293.
87. [87] Seweryn, A., Mróz, Z., A non-local stress failure condition for structural elements under multiaxial loading. Eng Fract Mech 51:6 (1995), 955–973.
88. [88] Kröner, E., Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3:5 (1967), 731–742.
89. [89] Eringen, A.C., Edelen, D.G.B., On nonlocal elasticity. Int J Eng Sci 10:3 (1972), 233–248.
90. [90] Edelen, D.G.B., Nonlocal field theories. Eringen, A.C., (eds.) Continuum physics, vol. IV, 1976, Academic Press, New-York, 75–204.
91. [91] Pijaudier-Cabot, G., Bažant, Z.P., Nonlocal damage theory. J Eng Mech 113:10 (1987), 1512–1533.
92. [92] Bažant, Z.P., Why continuum damage is nonlocal: Justification by quasiperiodic microcrack array. Mech Res Commun 14:5–6 (1987), 407–419.
93. [93] de Borst, R., Mühlhaus, H.-B., Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35:3 (1992), 521–539.
94. [94] Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P., Gradient enhanced damage for quasi-brittle material. Int J Numer Methods Eng 39:19 (1996), 3391–3403.
95. [95] Peerlings RHJ. Enhanced damage modelling for fracture and fatigue [PhD thesis]. Eindhoven University of Technology; 1999. 105 p.
96. [96] Tovo, R., Livieri, P., Benvenuti, E., An implicit gradient type of static failure criterion for mixed-mode loading. Int J Fract 141:3–4 (2006), 497–511.
97. [97] Tovo, R., Livieri, P., An implicit gradient application to fatigue of sharp notches and weldments. Eng Fract Mech 74:4 (2007), 515–526.
98. [98] Tovo, R., Livieri, P., A numerical approach to fatigue assessment of spot weld joints. Fatigue Fract Eng Mater Struct 34:1 (2010), 32–45.
99. [99] Tovo, R., Livieri, P., An implicit gradient application to fatigue of complex structures. Eng Fract Mech 75:7 (2008), 1804–1814.
100. [100] Capetta, S., Tovo, R., Taylor, D., Livieri, P., Numerical evaluation of fatigue strength on mechanical notched components under multiaxial loadings. Int J Fatigue 33:5 (2011), 661–671.
101. [101] Bažant, Z.P., Planas, J., Fracture and size effect in concrete and other quasi-brittle materials. 1998, CRC Press LLC, Boca Raton, Florida 640 p.
102. [102] Vořechovský, M., Sadílek, V., Computational modeling of size effects in concrete specimens under uniaxial tension. Int J Fract 154:1–2 (2008), 27–49.
103. [103] Syroka-Korol, E., Tejchman, J., Numerical studies on size effects in concrete beams. Arch, Civ Eng, Environ (ACEE) 5:2 (2012), 67–78.
104. [104] Bažant, Z., Vořechovský, M., Novák, D., Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions. J Eng Mech 133:2 (2007), 153–162.
105. [105] Fischer, K.-F., Göldner, H., Günther, W., Sörgel, W., On the relationship between notch stress analysis and crack fracture mechanics. ZAMM - Z Angew Math Mech 62:7 (1982), 345–348.
106. [106] van Vliet, M.R.A., van Mier, J.G.M., Size effect of concrete and sandstone. Heron 45:2 (2000), 91–108.
107. [107] Rummel, F., Fracture mechanics approach to hydraulic fracturing stress measurements. Atkinson, B.K., (eds.) Fracture mechanics of rock, 1987, Academic Press, London, 217–240.
108. [108] Paris PC, Sih GC. Stress analysis of cracks. American Society of Testing and Materials. ASTM STP 381; 1965.
109. [109] Zhao Z, Kim H, Haimson B. Hydraulic fracturing initiation in granite. In: 2nd North American rock mechanics symposium. Montreal, Quebec, Canada: American Rock Mechanics Association. ARMA-96-1279; 1996. p. 1–6.
110. [110] Lhomme T. Initiation of hydraulic fractures in natural sandstones [PhD thesis]. Delft University of Technology; 2005. 257 p.
|