Инд. авторы: Kuroda K., Reimann J., Kokh K.A., Tereshchenko O.E., Kimura A., Güdde J., Höfer U.
Заглавие: Ultrafast energy- and momentum-resolved surface Dirac photocurrents in the topological insulator Sb2Te3
Библ. ссылка: Kuroda K., Reimann J., Kokh K.A., Tereshchenko O.E., Kimura A., Güdde J., Höfer U. Ultrafast energy- and momentum-resolved surface Dirac photocurrents in the topological insulator Sb2Te3 // Physical Review B: Condensed Matter and Materials Physics. - 2017. - Vol.95. - Iss. 8. - Art.081103. - ISSN 1098-0121. - EISSN 1550-235X.
Внешние системы: DOI: 10.1103/PhysRevB.95.081103; РИНЦ: 29485216; SCOPUS: 2-s2.0-85013167874; WoS: 000402193100001;
Реферат: eng: We present energy-momentum mapping of the surface Dirac photocurrent in the topological insulator Sb2Te3 by means of time- and angle-resolved two-photon photoemission spectroscopy combined with polarization-variable midinfrared pulsed laser excitation. It is demonstrated that a direct optical transition from the occupied to the unoccupied part of the surface Dirac cone permits the linear and circular photogalvanic effect, which thereby enables us to coherently control the electric surface photocurrent by laser polarization. Moreover, the photocurrent mapping directly visualizes ultrafast current dynamics in the Dirac cone as a function of time. We unravel the ultrafast intraband relaxation dynamics of the inelastic scattering and momentum scattering separately. Our observations pave the way for coherent optical control over surface Dirac electrons in topological insulators. © 2017 American Physical Society.
Ключевые слова: CURRENTS; DYNAMICS; BI2TE3; MANIPULATION; TEXTURE;
Издано: 2017
Физ. характеристика: 081103
Цитирование: 1. A. Mabchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nat. Mater. 14, 871 (2015). 1476-1122 10.1038/nmat4360 2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). RMPHAT 0034-6861 10.1103/RevModPhys.82.3045 3. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013). JUPSAU 0031-9015 10.7566/JPSJ.82.102001 4. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009). 1745-2473 10.1038/nphys1274 5. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009). SCIEAS 0036-8075 10.1126/science.1173034 6. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009). NATUAS 0028-0836 10.1038/nature08234 7. Z.-H. Pan, E. Vescovo, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, G. D. Gu, and T. Valla, Phys. Rev. Lett. 106, 257004 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.257004 8. S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. Lett. 106, 216803 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.216803 9. K. Miyamoto, A. Kimura, T. Okuda, H. Miyahara, K. Kuroda, H. Namatame, M. Taniguchi, S. V. Eremeev, T. V. Menshchikova, E. V. Chulkov, K. A. Kokh, and O. E. Tereshchenko, Phys. Rev. Lett. 109, 166802 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.166802 10. J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Nat. Nanotechnol. 7, 96 (2012). 1748-3387 10.1038/nnano.2011.214 11. C. Kastl, C. Karnetzky, H. Karl, and A. W. Holleitner, Nat. Commun. 6, 6617 (2015). 2041-1723 10.1038/ncomms7617 12. P. Olbrich, L. E. Golub, T. Herrmann, S. N. Danilov, H. Plank, V. V. Belkov, G. Mussler, C. Weyrich, C. M. Schneider, J. Kampmeier, D. Grützmacher, L. Plucinski, M. Eschbach, and S. D. Ganichev, Phys. Rev. Lett. 113, 096601 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.096601 13. N. Ogawa, R. Yoshimi, K. Yasuda, A. Tsukazaki, M. Kawasaki, and M. Tokura, Nat. Commun. 7, 12246 (2016). 2041-1723 10.1038/ncomms12246 14. J. Qi, X. Chen, W. Yu, P. Cadden-Zimansky, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, Appl. Phys. Lett. 97, 182102 (2010). APPLAB 0003-6951 10.1063/1.3513826 15. D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. Lett. 107, 077401 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.077401 16. K. Kuroda, J. Reimann, J. Güdde, and U. Höfer, Phys. Rev. Lett. 116, 076801 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.076801 17. J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007). SCIEAS 0036-8075 10.1126/science.1146764 18. J. A. Sobota, S. Yang, J. G. Analytis, Y. L. Chen, I. R. Fisher, P. S. Kirchmann, and Z. X. Shen, Phys. Rev. Lett. 108, 117403 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.117403 19. Y. H. Wang, D. Hsieh, E. J. Sie, H. Steinberg, D. R. Gardner, Y. S. Lee, P. Jarillo-Herrero, and N. Gedik, Phys. Rev. Lett. 109, 127401 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.127401 20. A. Crepaldi, B. Ressel, F. Cilento, M. Zacchigna, C. Grazioli, H. Berger, Ph. Bugnon, K. Kern, M. Grioni, and F. Parmigiani, Phys. Rev. B 86, 205133 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.205133 21. M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, Nano Lett. 12, 3532 (2012). NALEFD 1530-6984 10.1021/nl301035x 22. S. Zhu, Y. Ishida, K. Kuroda, K. Sumida, M. Ye, J. Wang, H. Pan, M. Taniguchi, S. Qiao, S. Shin, and A. Kimura, Sci. Rep. 5, 13213 (2015). 2045-2322 10.1038/srep13213 23. D. Niesner, S. Otto, V. Hermann, T. Fauster, T. V. Menshchikova, S. V. Eremeev, Z. S. Aliev, I. R. Amiraslanov, M. B. Babanly, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 89, 081404 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.081404 24. J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, Phys. Rev. B 90, 081106 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.081106 25. P. Hosur, Phys. Rev. B 83, 035309 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.83.035309 26. H. Plank, L. E. Golub, S. Bauer, V. V. Belkov, T. Herrmann, P. Olbrich, M. Eschbach, L. Plucinski, C. M. Schneider, J. Kampmeier, M. Lanius, G. Mussler, D. Grützmacher, and S. D. Ganichev, Phys. Rev. B 93, 125434 (2016). 2469-9950 10.1103/PhysRevB.93.125434 27. Y. Onishi, Z. Ren, M. Novak, K. Segawa, Y. Ando, and K. Tanaka, arXiv:1403.2492. 28. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.95.081103 for more details. 29. C. Jozwiak, C. H. Park, K. Gotlieb, C. Hwang, D. H. Lee, S. G. Louie, J. D. Denlinger, C. R. Rotundu, R. J. Birgeneau, Z. Hussain, and A. Lanzara, Nat. Phys. 9, 293 (2013). 1745-2473 10.1038/nphys2572 30. Z.-H. Zhu, C. N. Veenstra, S. Zhdanovich, M. P. Schneider, T. Okuda, K. Miyamoto, S.-Y. Zhu, H. Namatame, M. Taniguchi, M. W. Haverkort, I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett. 112, 076802 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.076802 31. Z. Xie, Nat. Commun. 5, 3382 (2014). 10.1038/ncomms4382 32. K. Kuroda, K. Yaji, M. Nakayama, A. Harasawa, Y. Ishida, S. Watanabe, C.-T. Chen, T. Kondo, F. Komori, and S. Shin, Phys. Rev. B 94, 165162 (2016). 2469-9950 10.1103/PhysRevB.94.165162 33. J. Sánchez-Barriga, E. Golias, A. Varykhalov, J. Braun, L. V. Yashina, R. Schumann, J. Minar, H. Ebert, O. Kornilov, and O. Rader, Phys. Rev. B 93, 155426 (2016). 2469-9950 10.1103/PhysRevB.93.155426