Инд. авторы: Drebushchak V.A., Ogienko A.G., Yunoshev A.S.
Заглавие: Metastable eutectic melting in the NaCl-H2O system
Библ. ссылка: Drebushchak V.A., Ogienko A.G., Yunoshev A.S. Metastable eutectic melting in the NaCl-H2O system // Thermochimica Acta. - 2017. - Vol.647. - P.94-100. - ISSN 0040-6031. - EISSN 1872-762X.
Внешние системы: DOI: 10.1016/j.tca.2016.12.004; РИНЦ: 29471140; SCOPUS: 2-s2.0-85006100048; WoS: 000392787500013;
Реферат: eng: Metastable eutectic melting of solid mixture NaCl + H2O was measured in a wide range of its compositions by using a DSC. The new eutectic melting was found to occur near −27 °C, below the well know ice-NaCl∙2H2O eutectic point (−21.1 °C, 23.3 wt.%) of equilibrium both phase diagram. The new low-temperature eutectic was detected for all samples, in two-phase regions, Н2О-NaCl∙2H2O and NaCl∙2H2O-NaCl. The new eutectic temperature is close to the value of ∼−28 °C reported by Roedder (1984) for the mixture of solid H2O and NaCl, which was never repeated or reaffirmed independently since then. The heat effect of the metastable eutectic melting did allow us to estimate the enthalpy of formation of hydrohalite from salt and ice: NaCl(cr) + 2H2O(cr) = NaCl∙2H2O(cr) + ΔH (= −0.73 ± 0.07 kJ mol−1). © 2016 Elsevier B.V.
Ключевые слова: Eutectics; Two-phase region; NaCl-H2O system; Metastable eutectic; Metastable; Hydrohalite; Eutectic temperature; Eutectic melting; Temperature; Mixtures; Melting; NaCl-H2O system; Metastable; Hydrohalite; Eutectic; DSC; Enthalpy of formation;
Издано: 2017
Физ. характеристика: с.94-100
Цитирование: 1. [1] Cohen-Adad, R., Lorimer, J.W., (eds.) Alkali Metal and Ammonium Chlorides in Water and Heavy Water (binary Systems). Solubility Data Series, vol. 47, 1991, Pergamon Press, Oxford, 64–209. 2. [2] Sterner, S.M., Hall, D.L., Bodnar, R.J., Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim. Cosmochim. Acta 52 (1988), 989–1005. 3. [3] Gunter, W.D., Chou, I.-M., Girsperger, S., Phase relations in the system NaCl-KCl-H2O II: differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 455 °C. Geochim. Cosmochim. Acta 47 (1983), 863–873. 4. [4] Roedder, E., The fluids in salt. Am. Miner. 69 (1984), 413–439. 5. [5] McCarthy, C., Cooper, R.F., Kirby, S.H., Rieck, K.D., Stern, L.A., Solidification and microstructures of binary ice-I/hydrate eutectic aggregates. Am. Miner. 92 (2007), 1550–1560. 6. [6] Drebushchak, V.A., Ogienko, A.G., Boldyreva, E.V., Polymorphic effects at the eutectic melting in the H2O–glycine system. J. Therm. Anal. Calorim. 111 (2013), 2187–2194. 7. [7] Surovtsev, N.V., Adichtchev, S.V., Malinovsky, V.K., Ogienko, A.G., Drebushchak, V.A., Manakov, A.Y., Ancharov, A.I., Yunoshev, A.S., Boldyreva, E.V., Glycine phases formed from frozen aqueous solutions: revisited. J. Chem. Phys., 137, 2012, 065103. 8. [8] Manakov, A.Y., Aladko, L.S., Ogienko, A.G., Ancharov, A.I., Hydrate formation in the system n-propanol–water. J. Therm. Anal. Calorim. 111 (2013), 885–890. 9. [9] Zakharov, B.A., Ogienko, A.G., Yunoshev, A.S., Ancharov, A.I., Boldyreva, E.V., Bis (paracetamol) pyridine –a new elusive paracetamol solvate: from modeling the phase diagram to successful single-crystal growth and structure–property relations. CrystEngComm 17 (2015), 7543–7550. 10. [10] Drebushchak, V.A., Calibration coefficient of a heat-flow DSC; Part II: Optimal calibration procedure. J. Therm. Anal. Calorim. 79 (2005), 213–218. 11. [11] Klewe, B., Pedersen, B., The crystal structure of sodium chloride dihydrate. Acta Cryst. B 30 (1974), 2363–2371. 12. [12] Goto, A., Hondoh, T., Mae, S., The electron density distribution in ice Ih determined by single-crystal x-ray diffractometry. J. Chem. Phys. 93 (1990), 1412–1417. 13. [13] Boettinger, W.J., Kattner, U.R., Moon, K.W., Perepezko, J.H., DTA and heat-flux DSC measurements of alloy melting and freezing. NIST Recommended Practice Guide. Special Publication 960-15, 2006, U.S. Government Printing Office, Washington 90 p. 14. [14] Navrotsky, A., Thermochemistry of nanomaterials. Rev. Miner. Geochem. 44 (2001), 73–103. 15. [15] Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield, H.J., Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U. S. A. 99:Suppl. 2 (2002), 6476–6481. 16. [16] Zhang, P., Xu, F., Navrotsky, A., Lee, J.S., Kim, S., Liu, J., Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19 (2007), 5687–5693. 17. [17] Zhang, P., Navrotsky, A., Guo, B., Kennedy, I., Clark, A.N., Lesher, C., Liu, Q., Energetics of cubic and monoclinic yttrium oxide polymorphs: phase transitions, surface enthalpies, and stability at the nanoscale. J. Phys. Chem. C 112 (2008), 932–938. 18. [18] Radha, A.V., Bomati-Miguel, O., Ushakov, S.V., Navrotsky, A., Tartaj, P., Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92 (2009), 133–140. 19. [19] Drebushchak, V.A., Pal'yanova, G.A., Seryotkin, Y.V., Drebushchak, T.N., Probable metal–insulator transition in Ag4SSe. J. Alloys Comp. 622 (2015), 236–242. 20. [20] Archer, D.G., Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21 (1992), 793–829.