Цитирование: | 1. Oetjen GW, Haseley P. Freeze-drying. 2nd ed. Weinheim: Wiley; 2004.
2. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.
3. Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21:191–200.
4. Liu JS. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol. 2006;11:3–28.
5. Teagarden DL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci. 2002;15:115–33.
6. Vessot S, Andrieu J. A review on freeze drying of drugs with tert-butanol (TBA) + water systems: characteristics, advantages, drawbacks. Dry Technol. 2012;30:377–85.
7. Kasraian K, DeLuca PP. The effect of tertiary butyl alcohol on the resistance of the dry product layer during primary drying. Pharm Res. 1995;12:491–5.
8. Daoussi R, Vessot S, Andrieu J, Monnier O. Sublimation kinetics and sublimation end-point times during freeze-drying of pharmaceutical active principle with organic co-solvent formulations. Chem Eng Res Des. 2009;87:899–907.
9. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488:136–53.
10. Hu JH, Johnston KP, Williams RO. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci. 2003;20:295–303.
11. Overhoff KA, Johnston KP, Tam J, Engstrom J, Williams RO. Use of thin film freezing to enable drug delivery: a review. J Drug Deliv Sci Technol. 2009;19:89–98.
12. Rasmussen DH, MacKenzie AP. Phase diagram for the system water–dimethylsulphoxide. Nature. 1968;220:1315–7.
13. Takaizumi K, Wakabayashi T. The freezing process in methanol-, ethanol-, and propanol-water systems as revealed by differential scanning calorimetry. J Solut Chem. 1997;26:927–39.
14. Dyadin YA, Bondaryuk IV, Zhurko FV. Clathrate hydrates at high pressures. In: Atwood JL, Davies JED, MacNicol DD, editors. Inclusion compounds, vol. 5. Oxford: Oxford University Press; 1991. p. 214–75.
15. Yu L, Milton N, Groleau EG, Mishra DS, Vansickle RE. Existence of a mannitol hydrate during freeze-drying and practical implications. J Pharm Sci. 1999;88:196–8.
16. Sundaramurthi P, Suryanarayanan R. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying. Pharm Res. 2010;27:2384–93.
17. Kasraian K, DeLuca PP. Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm Res. 1995;12:484–90.
18. Sloan ED, Koh CA. Clathrate hydrates of natural gases. 3rd ed. Boca Raton: CRC Press; 2008.
19. Sum AK, Koh CA, Sloan ED. Clathrate hydrates: from laboratory science to engineering practice. Ind Eng Chem Res. 2009;48:7457–65.
20. Lund DB, Fennema O, Powrie WD. Effect of gas hydrates and hydrate formers on invertase activity. Arch Biochem Biophys. 1969;129:181–8.
21. Booker RD, Koh CA, Sloan ED, Sum AK, Shalaev E, Singh SK. Xenon hydrate dissociation measurements with model protein systems. J Phys Chem B. 2011;115:10270–6.
22. Ogienko AG, Boldyreva EV, Manakov AY, Myz SA, Ogienko AA, Yunoshev AS, Zevak EG, Kutaev NV, Krasnikov AA. Preparation of fine powders of pharmaceutical substances by freeze-drying of frozen solutions in systems with clathrate formation. Dokl Phys Chem. 2012;444:88–92.
23. Zevak EG, Ogienko AG, Boldyreva EV, Myz SA, Ogienko AA, Kovalenko YE, Kolesov BA, Drebushchak VA, Trofimov NA, Krasnikov AA, Manakov AY, Boldyrev VV. Salbutamol-glycine composite microballs for pulmonary drug delivery. RDD Eur. 2013;2:329–34.
24. Teagarden DL, Wang W, Baker DS. Practical aspects of freeze-drying of pharmaceutical and biological products using non-aqueous co-solvent systems. In: Rey L, May JC, editors. Freeze drying/lyophilization of pharmaceutical and biological products. 3rd ed. London: Informa Healthcare; 2010. p. 254–87.
25. Cui JX, Li CL, Deng YJ, Wang YL, Wang W. Freeze-drying of liposomes using tertiary butyl alcohol/water co-solvent systems. Int J Pharm. 2006;312:131–6.
26. Oesterle J, Franks F, Auffret T. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying. Pharm Dev Technol. 1998;3:175–83.
27. Park Y, Cha M, Shin W, Cha JH, Lee H, Ripmeester JA. Thermodynamic and spectroscopic analysis of tertbutyl alcohol hydrate: application for the methane gas storage and transportation. In: Proceedings of the 6th international conference on gas hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 6–10 July 2008.
28. Wittaya-Areekul S, Nail SL. Freeze-drying of tert-butanol/water systems: effects of formulation and process variables on residual solvents. J Pharm Sci. 1998;87:491–5.
29. Wittaya-Areekul S, Needham G, Milton N, Roy ML, Nail SL. Freeze-drying of tert-butanol/water cosolvent systems: a case study in formation of friable freeze-dried powder of tobramycin sulfate. J Pharm Sci. 2002;91:1147–55.
30. Carpenter JF, Chang BS, Garzon-Rodriguez W, Randolph TW. Rational design of stable lyophilized protein formulations: theory and practice. In: Carpenter JF, Manning MC, editors. Rational design of stable protein formulations: theory and practice. Boston: Springer; 2002. p. 109–33.
31. Pyne A, Suryanarayanan R. Phase transitions of glycine in frozen aqueous solutions and during freeze-drying. Pharm Res. 2001;18:1448–54.
32. Chongprasert S, Knopp SA, Nail SL. Characterization of frozen solutions of glycine. J Pharm Sci. 2001;90:1720–8.
33. Surovtsev NV, Adichtchev SV, Malinovsky VK, Ogienko AG, Drebushchak VA, Manakov AY, Ancharov AI, Yunoshev AS, Boldyreva EV. Glycine phases formed from frozen aqueous solutions, revisited. J Chem Phys. 2012;137:065103.
34. Shalaev E, Franks F. Solid–liquid state diagrams in pharmaceutical lyophilisation: crystallisation of solutes. In: Levine H, editor. Progress in amorphous food and pharmaceutical systems. Cambridge: The Royal Society of Chemistry; 2002. p. 200–15.
35. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YA, Shutova ES. Polymorphism of glycine: thermodynamic aspects. 1. Relative stability of the polymorphs. J Therm Anal Calorim. 2003;73:409–18.
36. Drebushchak VA, Ogienko AG, Boldyreva EV. Polymorphic effects and the eutectic melting in the H2O-glycine system. J Therm Anal Calorim. 2013;111:2187–94.
37. Röttger K, Endriss A, Ihringer J, Doyle S, Kuhs WF. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Cryst B. 1994;50:644–8.
38. Ogienko AG, Kurnosov AV, Manakov AY, Larionov EG, Ancharov AI, Sheromov MA, Nesterov AN. Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation. J Phys Chem B. 2006;110:2840–6.
39. Hester KC, Huo Z, Ballard AL, Koh CA, Miller KT, Sloan ED. Thermal expansivity for sI and sII clathrate hydrates. J Phys Chem B. 2007;111:8830–5.
40. Lebedev BV, Rabinovich IB, Milov VI, Lityagov VY. Thermodynamic properties of tetrahydrofuran from 8 to 322 K. J ChemThermodyn. 1978;10:321–9.
41. Bhatnagar BS, Martin SM, Teagarden DL, Shalaev EY, Suryanarayanan R. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing. J Pharm Sci. 2010;99:2609–19.
42. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90:860–71.
43. Liu J, Viverette T, Virgin M, Anderson M, Dalal P. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. Pharm Dev Technol. 2005;10:261–72.
44. Hottot A, Vessot S, Andrieu J. Freeze drying of pharmaceuticals in vials: influence of freezing protocol and sample configuration on ice morphology and freeze-dried cake texture. Chem Eng Process. 2007;46:666–74.
45. Nakagawa K, Hottot A, Vessot S, Andrieu J. Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying. Chem Eng Process. 2006;45:783–91.
46. Zhang W, Creek JL, Koh CA. A novel multiple cell photo-sensor instrument: principles and application to the study of THF hydrate formation. Meas Sci Technol. 2001;12:1620–30.
47. Handa YP. Enthalpies of fusion and heat capacities for H 2 18 O ice and H 2 18 O tetrahydrofuran clathrate hydrate in the range 100–270 K. Can J Chem. 1984;62:1659–61.
48. Tombari E, Presto S, Salvetti G, Johari GP. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt. J Chem Phys. 2006;124:154507.
49. Hossenlopp IA, Scott DW. Heat capacities and enthalpies of vaporization of six organic compounds. J Chem Thermodyn. 1981;13:405–14.
50. Liapis AI, Bruttini R. Freeze Drying. In: Mujumdar AS, editor. Handbook of industrial drying. 2nd ed. New York: Marcel Dekker Inc; 1995. p. 309–44.
51. Drebushchak TN, Boldyreva EV, Shutova ES. β-glycine. Acta Cryst E. 2002;58:o634–6.
52. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073394.pdf.
53. Gupta RB. Polymer or protein stabilized nanoparticles from emulsions. In: Gupta RB, Kompella UB, editors. Nanoparticle technology for drug delivery. New York: CRC Press; 2006. p. 85–102.
54. Harries M, Ellis P, Harper P. Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J Clin Oncol. 2005;23:7768–71.
55. Fu Q, Sun J, Zhang WP, Sui XF, Yan ZT, He ZG. Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Pat Anticancer Drug Discov. 2009;4:262–72.
56. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–83.
57. Yi XL, Lian XH, Dong JX, Wan ZY, Xia CY, Song X, Fu Y, Gong T, Zhang Z. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol Pharm. 2015;12:4085–98.
58. Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016;34:414–8.
59. Rogers TL, Nelsen AC, Hu JH, Brown JN, Sarkari M, Young TJ, Johnston KP, Williams RO. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm. 2002;54:271–80.
|