Инд. авторы: Lavrentyev A.A., Gabrelian B.V., Vu V.T., Ananchenko L.N., Isaenko L.I., Yelisseyev A.P., Khyzhun O.Y.
Заглавие: Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations
Библ. ссылка: Lavrentyev A.A., Gabrelian B.V., Vu V.T., Ananchenko L.N., Isaenko L.I., Yelisseyev A.P., Khyzhun O.Y. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations // Optical Materials. - 2017. - Vol.66. - P.149-159. - ISSN 0925-3467. - EISSN 1873-1252.
Внешние системы: DOI: 10.1016/j.optmat.2017.01.049; РИНЦ: 29478298; SCOPUS: 2-s2.0-85012050278; WoS: 000400200000023;
Реферат: eng: We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations. © 2017 Elsevier B.V.
Ключевые слова: X ray emission spectroscopy; Optical characteristics; Fundamental absorption edge; Energy distributions; Electronic structure and optical properties; Bridgman-Stockbarger method; Band structure calculation; Augmented plane waves; X ray spectroscopy; X ray scattering; Valence bands; Single crystals; Single crystal surfaces; Semiconductor materials; Photons; Photoelectrons; Photoelectron spectroscopy; Optical properties; Optical emission spectroscopy; Ion beams; Emission spectroscopy; Electronic structure; Electromagnetic wave emission; Density functional theory; X-ray photoelectron spectroscopy; X-ray emission spectroscopy; Semiconductors; Optical properties; Electronic structure; Semiconducting selenium compounds; X ray photoelectron spectroscopy;
Издано: 2017
Физ. характеристика: с.149-159
Цитирование: 1. [1] Tell, B., Kasper, H.M., Phys. Rev. B 4 (1971), 4455–4459. 2. [2] Tell, B., Shay, J.L., Kasper, H.M., J. Appl. Phys. 43 (1972), 2463–2471. 3. [3] Kamijok, T., Nozaki, T., Kuriyama, K., J. Appl. Phys. 53 (1982), 761–763. 4. [4] Wagner, S., Shay, J.L., Tell, B., Kasper, H.M., Appl. Phys. Lett. 22 (1973), 351–353. 5. [5] Shay, J.L., Bridenbaugh, P., Tell, B., Kasper, H.M., J. Lumin 6 (1973), 140–142. 6. [6] Shay, J.L., Tell, B., Kasper, H.M., Schiavone, L.M., Phys. Rev. B 7 (1973), 4485–4490. 7. [7] Kuriyama, K., Kato, T., Takahashi, A., Phys. Rev. B 46 (1992), 15518–15519. 8. [8] Levine, B.F., Phys. Rev. B 7 (1973), 2591–2600. 9. [9] Levine, B.F., Phys. Rev. B 7 (1973), 2600–2626. 10. [10] Kim, J.Y., Hughbanks, T., Inorg. Chem. 39 (2000), 3092–3097. 11. [11] Li, L.-H., Li, J.-Q., Wu, L.M., J. Solid State Chem. 181 (2008), 2462–2468. 12. [12] Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Ananchenko, L.N., Isaenko, L.I., Yelisseyev, A., Krinitsin, P.G., Khyzhun, O.Y., Phys. B 501 (2016), 74–83. 13. [13] Isaenko, L., Yelisseyev, A., Lobanov, S., Krinitsin, P., Petrov, V., Zondy, J.-J., J. Non Cryst. Solids 352 (2006), 2439–2443. 14. [14] Mei, D., Yin, W., Feng, K., Lin, Z., Bai, L., Yao, J., Wu, Y., Inorg. Chem. 51 (2012), 1035–1040. 15. [15] Boyd, G.D., Buehler, E., Storz, F.G., Appl. Phys. Lett. 18 (1971), 301–304. 16. [16] Chemla, D.S., Kupecek, P.J., Robertson, D.S., Smith, R.C., Opt. Commun. 3 (1971), 29–31. 17. [17] Boyd, G.D., Gandrud, W.B., Buehler, E., Appl. Phys. Lett. 18 (1971), 446–448. 18. [18] Boyd, G.D., Kasper, H.M., McFree, J.H., Storz, F.G., IEEE J. Quantum Electron QE-8 (1972), 900–908. 19. [19] Schunemann, P.G., AIP Conf. Proc. 916 (2007), 541–559. 20. [20] Li, X., Peng, W., Fu, H., J. Alloys Compd. 581 (2013), 867–872. 21. [21] Isaenko, L., Vasilyeva, I., Merkulov, A., Yelisseyev, A., Lobanov, S., J. Cryst. Growth 275 (2005), 217–223. 22. [22] Kuriyama, K., Nozaki, T., J. Appl. Phys. 52 (1981), 6441–6443. 23. [23] Isaenko, L., Yelisseyev, A., Lobanov, S., Titov, A., Petrov, V., Zondy, J.-J., Krinitsin, P., Merkulov, A., Vedenyapin, V., Smirnova, J., Cryst. Res. Technol. 38 (2003), 379–387. 24. [24] Isaenko, L.I., Yelisseyev, A.P., Semicond. Sci. Technol., 31, 2016, 123001. 25. [25] Petrov, V., Yelisseyev, A., Isaenko, L., Lobanov, S., Titov, A., Zondy, J.-J., Appl. Phys. B 78 (2004), 543–546. 26. [26] Stowe, A.C., Woodward, J., Tupitsyn, E., Rowe, E., Wiggins, B., Matei, L., Bhattacharya, P., Burger, A., J. Cryst. Growth 379 (2013), 111–114. 27. [27] Tupitsyn, E., Bhattacharya, P., Rowe, E., Matei, L., Cui, Y., Buliga, V., Groza, M., Wiggins, B., Burger, A., Stowe, A., J. Cryst. Growth 393 (2014), 23–27. 28. [28] Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Pokrovsky, L.D., Shlegel, V.N., Ivannikova, N.V., Mater. Des. 105 (2016), 315–322. 29. [29] Parr, R.G., Yang, W.T., Density Functional Theory of Atom-molecules. 1989, Oxford university press, Oxford. 30. [30] Bai, C., Lin, Z.S., Wang, Z.Z., Chen, C.T., J. Appl. Phys., 103, 2008, 083111. 31. [31] Li, L.-H., Li, J.-Q., Wu, L.-M., J. Solid State Chem. 181 (2008), 2462–2468. 32. [32] Reshak, A.H., Auluck, S., Kityk, I.V., Al-Douri, Y., Khenata, R., Bouhemadou, A., Appl. Phys. A 94 (2009), 315–320. 33. [33] Ma, T.-H., Yang, C.-H., Xie, Y., Sun, L., Lv, W.-Q., Wang, R., Ren, Y.-L., Phys. B 405 (2010), 363–368. 34. [34] Reshak, A.H., Auluck, S., Kityk, I.V., J. Alloys Compd. 473 (2009), 20–24. 35. [35] Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. 2001, Karlheinz Schwarz, Technical Universität Wien, Austria ISBN 3-9501031-1-2. 36. [36] Atuchin, V.V., Galashov, E.N., Khyzhun, O.Y., Kozhukhov, A.S., Pokrovsky, L.D., Shlegel, V.N., Cryst. Growth Des. 11 (2011), 2479–2484. 37. [37] Perdew, J.P., Zunger, A., Phys. Rev. B 23 (1981), 5048–5079. 38. [38] Perdew, J.P., Burke, S., Ernzerhof, M., Phys. Rev. Lett. 77 (1996), 3865–3868. 39. [39] Kohanoff, J., Gidopoulos, N.I., Density functional theory: basics, new trends and applications. Wilson, S., (eds.) Handbook of Molecular Physics and Quantum Chemistry, 2003, John Wiley & Sons Ltd, Chichester, 532–568 Volume 2, Part 5, Chapter 26. 40. [40] Cohen, A.J., Mori-Sánchez, P., Yang, W., Phys. Rev. B, 77, 2008, 115123. 41. [41] Wang, C.S., Klein, B.M., Phys. Rev. B 24 (1981), 3417–3429. 42. [42] Reshak, A.H., Auluck, S., Kityk, I.V., Perona, A., Claudet, B., J. Phys. Condens. Matter, 20, 2008, 325213. 43. [43] Lavrentyev, A.A., Gabrelian, B.V., Nikiforov, I.Y., Parasyuk, O.V., Khyzhun, O.Y., J. Alloys Compd. 481 (2009), 28–34. 44. [44] Tran, F., Blaha, P., Phys. Rev. Lett., 102, 2009, 226401. 45. [45] Kohler, D., Tran, F., Blaha, P., Phys. Rev. B, 83, 2011, 195134. 46. [46] Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Shkumat, P.N., Ocheretova, V.A., Parasyuk, O.V., Khyzhun, O.Y., Opt. Mater. 47 (2015), 435–444. 47. [47] Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Shkumat, P.N., Myronchuk, G.L., Khvyshchun, M., Fedorchuk, A.O., Parasyuk, O.V., Khyzhun, O.Y., Opt. Mater. 42 (2015), 351–360. 48. [48] Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Denysyuk, N.M., Shkumat, P.N., Tarasova, A.Y., Isaenko, L.I., Khyzhun, O.Y., J. Phys. Chem. Solids 91 (2016), 25–33. 49. [49] Tarasova, A.Y., Isaenko, L.I., Kesler, V.G., Pashkov, V.M., Yelisseyev, A.P., Denysyuk, N.M., Khyzhun, O.Y., J. Phys. Chem. Solids 73 (2012), 674–682. 50. [50] Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Galashov, E.N., Shlegel, V.N., Mater. Chem. Phys. 140 (2013), 588–595. 51. [51] Lavrentyev, A.A., Gabrelian, B.V., Kulagin, B.B., Nikiforov, I.Ya., Khyzhun, O.Yu., Bull. Russ. Acad. Sci. Phys. 73 (2009), 1140–1142. 52. [52] Khyzhun, O.Y., Parasyuk, O.V., Fedorchuk, A.O., Adv. Alloys Comp. 1 (2014), 15–29. 53. [53] Khyzhun, O.Y., Halyan, V.V., Danyliuk, I.V., Ivashchenko, I.A., J. Mater. Sci. Mater. Electron 27 (2016), 3258–3264. 54. [54] Myronchuk, G.L., Davydyuk, G.E., Parasyuk, O.V., Khyzhun, O.Y., Andrievski, R.A., Fedorchuk, A.O., Danylchuk, S.P., Piskach, L.V., Mozolyuk, M.Y., J. Mater. Sci. Mater. Electron 24 (2013), 3555–3563. 55. [55] Khyzhun, O.Y., Bekenev, V.L., Ocheretova, V.A., Fedorchuk, A.O., Parasyuk, O.V., Phys. B 461 (2015), 75–84. 56. [56] Ocheretova, V.A., Parasyuk, O.V., Fedorchuk, A.O., Khyzhun, O.Y., Mater. Chem. Phys. 160 (2015), 345–351. 57. [57] Khyzhun, O.Y., Zaulychny, Y.V., Zhurakovsky, E.A., J. Alloys Compd. 244 (1996), 107–112. 58. [58] Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., Phys. Rev. B 48 (1993), 16929–16934. 59. [59] Novak, P., Boucher, F., Gressier, P., Blaha, P., Schwarz, K., Phys. Rev. B, 63, 2001, 235114. 60. [60] Blöchl, P.E., Jepsen, O., Andersen, O.K., Phys. Rev. B 49 (1994), 16223–16233. 61. [61] Ambrosch-Draxl, C., Sofo, J.O., Comp. Phys. Commun. 175 (2006), 1–14. 62. [62] Khan, S.A., Reshak, A.H., Int. J. Electrochem. Sci. 8 (2013), 9459–9473. 63. [63] Delin, A., Ravindran, P., Eriksson, O., Wills, J.M., Int. J. Quantum Chem. 69 (1998), 349–358. 64. [64] H. Tributsch, Z. Naturforsch. 32A (1977) 972. 65. [65] Wooten, F., Optical Properties of Solids. 1972, Academic Press, New York. 66. [66] Fox, M., Optical Properties of Solids. 2001, Oxford University Press, Oxford. 67. [67] Boujnah, M., Dakir, O., Zaari, H., Benyoussef, A., Al Kenz, A., J. Appl. Phys., 116, 2014, 123703. 68. [68] Eifler, Riede, V., Brückner, J., Weise, S., Krämer, V., Lippold, G., Schmitz, W., Bente, K., Grill, W., Jpn. J. Appl. Phys., 39(39–1), 2000, 279. 69. [69] Varshni, Y.P., Physica 34 (1967), 149–154. 70. [70] O'Donnel, K.P., Chen, C., Appl. Phys. Lett. 58 (1991), 2924–2926. 71. [71] Meisel, A., Leonhardt, G., Szargan, R., X-Ray Spectra and Chemical Binding. 1989, Springer-Verlag, Berlin/Heidelberg. 72. [72] Kolinko, M.I., Kityk, I.V., Krochuk, A.S., J. Phys. Chem. Solids 53 (1992), 1315–1320.