Цитирование: | 1. Campbell IH, Stepanov AS, Liang H-Y et al (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Mineral Petrol 167:1–22. doi:10.1007/s00410-014-0983-9
2. Chan GH-N, Waters DJ, Searle MP et al (2009) Probing the basement of southern Tibet: evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke. J Geol Soc 166:45–52. doi:10.1144/0016-76492007-145
3. Chupin VP, Kuz’min DV, Madyukov IA (2006) Melt inclusions in minerals of scapolite-bearing granulite (lower crustal xenoliths from diatremes of the Pamirs). Doklady Earth Sci 407:507–511
4. Ding L, Kapp P, Zhong D, Deng W (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865. doi:10.1093/petrology/egg061
5. Gordon SM, Luffi P, Hacker B et al (2012) The thermal structure of continental crust in active orogens: insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains. J Metamorph Geol 30:413–434
6. Hacker BR, Gnos E, Ratschbacher L et al (2000) Hot and dry deep crustal xenoliths from Tibet. Science 287:2463–2466. doi:10.1126/science.287.5462.2463
7. Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86. doi:10.1016/S0016-7878(07)80049-6
8. Madyukov IA, Chupin VP, Kuzmin DV (2011) Genesis of scapolite from granulites (lower-crustal xenoliths from the Pamir diatremes): results of study of melt inclusions. Russ Geol Geophys 52:1319–1333. doi:10.1016/j.rgg.2011.10.005
9. Miller C, Schuster R, Klötzli U et al (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424
10. Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:79–108
11. Qian Q, Hermann J (2010) Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. J Petrol 51:1381–1416. doi:10.1093/petrology/egq023
12. Schulmann K, Lexa O, Janoušek V et al (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278. doi:10.1130/G35290.1
13. Stepanov AS, Hermann J, Korsakov AV, Rubatto D (2014) Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions. Contrib Mineral Petrol 167:1–25. doi:10.1007/s00410-014-1002-x
14. Stepanov AS, Hermann J, Rubatto D, et al (2016) Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in Garnet, Kokchetav Massif, Kazakhstan. J Petrol. doi:10.1093/petrology/egw049
15. Turner S, Arnaud N, Liu J et al (1996) Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71
16. Wang R, Richards JP, Zhou L et al (2015) The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth Sci Rev Complete 150:68–94. doi:10.1016/j.earscirev.2015.07.003
17. Wang R, Collins WJ, Weinberg RF et al (2016a) Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contrib Mineral Petrol 171:62. doi:10.1007/s00410-016-1272-6
18. Wang Y, Prelević D, Buhre S, Foley SF (2016b) Constraints on the sources of post-collisional K-rich magmatism: the roles of continental clastic sediments and terrigenous blueschists. Chem Geol. doi:10.1016/j.chemgeo.2016.10.006
|