Инд. авторы: Stepanov A.S., Campbell I., Rapp R.P., Lowczak J., Korsakov A.V.
Заглавие: Discussion: “Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust” by Wang et al. 2016 (Contributions to Mineralogy and Petrology) 171:62
Библ. ссылка: Stepanov A.S., Campbell I., Rapp R.P., Lowczak J., Korsakov A.V. Discussion: “Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust” by Wang et al. 2016 (Contributions to Mineralogy and Petrology) 171:62 // Contributions to Mineralogy and Petrology. - 2017. - Vol.172. - Iss. 4. - Art.19. - ISSN 0010-7999. - EISSN 1432-0967.
Внешние системы: DOI: 10.1007/s00410-017-1332-6; РИНЦ: 29484425; SCOPUS: 2-s2.0-85016118600; WoS: 000397978000005;
Реферат: eng: Wang et al. (Contrib Mineral Petrol 171:62, 2016a) present data on composition of xenolith from Southern Tibet and conclude that ulrapotassic melts from the region formed by melting mantle, and complex interaction with a crustal component. In this discussion we demonstrate that numerous observations presented by Wang et al. (2016a) can be explained by partial melting of crust followed by interaction between that melt and the mantle. We show that this model can explain the variability of magmas in such suits without evoking occurrence of coincidental, unrelated events. Moreover we demonstrate that our model of a crustal origin of the proto-shoshonite melts is now supported by independent lines of evidence such as geochemistry of restites after high- and ultrahigh- pressure melting and melt inclusion studies. © 2017, Springer-Verlag Berlin Heidelberg.
Ключевые слова: Shoshonite; Crust–mantle interaction; Ultrapotassic magmas; Xenolith;
Издано: 2017
Физ. характеристика: 19
Цитирование: 1. Campbell IH, Stepanov AS, Liang H-Y et al (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Mineral Petrol 167:1–22. doi:10.1007/s00410-014-0983-9 2. Chan GH-N, Waters DJ, Searle MP et al (2009) Probing the basement of southern Tibet: evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke. J Geol Soc 166:45–52. doi:10.1144/0016-76492007-145 3. Chupin VP, Kuz’min DV, Madyukov IA (2006) Melt inclusions in minerals of scapolite-bearing granulite (lower crustal xenoliths from diatremes of the Pamirs). Doklady Earth Sci 407:507–511 4. Ding L, Kapp P, Zhong D, Deng W (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865. doi:10.1093/petrology/egg061 5. Gordon SM, Luffi P, Hacker B et al (2012) The thermal structure of continental crust in active orogens: insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains. J Metamorph Geol 30:413–434 6. Hacker BR, Gnos E, Ratschbacher L et al (2000) Hot and dry deep crustal xenoliths from Tibet. Science 287:2463–2466. doi:10.1126/science.287.5462.2463 7. Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86. doi:10.1016/S0016-7878(07)80049-6 8. Madyukov IA, Chupin VP, Kuzmin DV (2011) Genesis of scapolite from granulites (lower-crustal xenoliths from the Pamir diatremes): results of study of melt inclusions. Russ Geol Geophys 52:1319–1333. doi:10.1016/j.rgg.2011.10.005 9. Miller C, Schuster R, Klötzli U et al (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424 10. Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:79–108 11. Qian Q, Hermann J (2010) Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. J Petrol 51:1381–1416. doi:10.1093/petrology/egq023 12. Schulmann K, Lexa O, Janoušek V et al (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278. doi:10.1130/G35290.1 13. Stepanov AS, Hermann J, Korsakov AV, Rubatto D (2014) Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions. Contrib Mineral Petrol 167:1–25. doi:10.1007/s00410-014-1002-x 14. Stepanov AS, Hermann J, Rubatto D, et al (2016) Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in Garnet, Kokchetav Massif, Kazakhstan. J Petrol. doi:10.1093/petrology/egw049 15. Turner S, Arnaud N, Liu J et al (1996) Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71 16. Wang R, Richards JP, Zhou L et al (2015) The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth Sci Rev Complete 150:68–94. doi:10.1016/j.earscirev.2015.07.003 17. Wang R, Collins WJ, Weinberg RF et al (2016a) Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contrib Mineral Petrol 171:62. doi:10.1007/s00410-016-1272-6 18. Wang Y, Prelević D, Buhre S, Foley SF (2016b) Constraints on the sources of post-collisional K-rich magmatism: the roles of continental clastic sediments and terrigenous blueschists. Chem Geol. doi:10.1016/j.chemgeo.2016.10.006