Инд. авторы: Drebushchak V.A., McGregor L., Rychkov D.A.
Заглавие: Cooling rate “window” in the crystallization of metacetamol form II
Библ. ссылка: Drebushchak V.A., McGregor L., Rychkov D.A. Cooling rate “window” in the crystallization of metacetamol form II // Journal of Thermal Analysis and Calorimetry. - 2017. - Vol.127. - Iss. 2. - P.1807-1814. - ISSN 1388-6150. - EISSN 1572-8943.
Внешние системы: DOI: 10.1007/s10973-016-5954-0; РИНЦ: 29467387; SCOPUS: 2-s2.0-84996526161; WoS: 000394142200066;
Реферат: eng: Melting and crystallization of metacetamol (C8H9NO2, N-(3-hydroxyphenyl)acetamide, structural isomer of paracetamol) were measured using DSC cycling heating–cooling between room temperature and 165 °C with constant heating rate of 6 °C min−1 and variable cooling rate ranging from 3 to 24 °C min−1. The selection of the cooling rate allows us to control the crystallization of metacetamol into one of its two polymorphs, I or II. Pure form II of metacetamol (recently discovered) is crystallized after the cooling rate of 6 °C min−1. Increase or decrease in the cooling rate suppresses the crystallization of the form II and produces the form I with remnant amorphous phase and a small impurity of the form II. The melting points and enthalpies of fusion are 420 K and 26.0 ± 1.3 kJ mol−1 for the form I and 399 K and 21.3 ± 1.1 kJ mol−1 for the form II, respectively. © 2016, Akadémiai Kiadó, Budapest, Hungary.
Ключевые слова: Variable cooling; Structural isomers; Paracetamol; Metacetamol; Melting and crystallization; Cycling heating; Cooling rates; Polymorphism; Melting; Polymorphism; Metacetamol; DSC; Cooling rate; Amorphous phase; Cooling;
Издано: 2017
Физ. характеристика: с.1807-1814
Цитирование: 1. Haisa M, Kashino S, Kawai R, Maeda H. The monoclinic form of p-hydroxyacetanilide. Acta Cryst. 1976;B32:1283–5. 2. Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Cryst. 1974;B30:2510–2. 3. Perrin M-A, Neumann MA, Elmaleh H, Zaske L. Crystal structure determination of the elusive paracetamol form III. Chem Commun. 2009;3181–3. 4. Smith SJ, Bishop MM, Montgomery JM, Hamilton TP, Vohra YK. Polymorphism in paracetamol: evidence of additional forms IV and V at high pressure. J Phys Chem A. 2014;118:6068–77. 5. McGregor L, Rychkov DA, Coster PL, Day S, Drebushchak VA, Achkasov AF, Nichol GS, Pulham CR, Boldyreva EV. A new polymorph of metacetamol. CrystEngComm. 2015;17:6183–92. 6. Burger A, Ramberger R. On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochim Acta. 1979;72:273–316. 7. Di Martino P, Conflant P, Drache M, Huvenne J-P, Guyot-Hermann A-M. Preparation and physical characterization of forms II and III of paracetamol. J Therm Anal. 1997;48:447–58. 8. Di Martino P, Palmieri GF, Martelli S. Molecular mobility of the paracetamol amorphous form. Chem Pharm Bull. 2000;48:1105–8. 9. Politov AA, Kostrovskii VG, Boldyrev VV. Conditions of preparation and crystallization of amorphous paracetamol. Russ J Phys Chem. 2001;75:1903–11. 10. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J Therm Anal Calorim. 2004;77:607–23. 11. Espeau Ph, Céolin R, Tamarit J-L, Perrin M-A, Gauchi J-P, Leveiller F. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci. 2005;94:524–39. 12. Drebushchak VA. Calibration coefficient of a heat-flow DSC; Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8. 13. Boldyreva EV, Arkhipov SG, Drebushchak TN, Drebushchak VA, Losev EA, Matvienko AA, Minkov VS, Rychkov DA, Seryotkin YV, Stare J, Zakharov BA. Isoenergetic polymorphism: the puzzle of tolazamide as a case study. Chem Eur J. 2015;21:15395–404. 14. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24. 15. Cahn JW, Hillig WB, Sears GW. The molecular mechanism of solidification. Acta Metall. 1964;12:1421–39. 16. Jackson KA, Uhlmann DR, Hunt JD. On the nature of crystal growth from the melt. J Cryst Growth. 1967;1:1–36. 17. Kidyarov BI, Bolkhovityanov YuB, Demyanov EA. Statistical investigation of the kinetics of crystal nucleation in melt. Zhurnal Phys Khim. 1970;44:668–72 (in Russian). 18. Langer JS. Instabilities and pattern formation in crystal growth. Rev Mod Phys. 1980;52:1–28. 19. Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non Cryst Solids. 2000;271:236–48. 20. Vali G. Repeatability and randomness in heterogeneous freezing nucleation. Atmos Chem Phys. 2008;8:5017–31. 21. Bach A, Fischer D, Jansen M. Metastable phase formation of indium monochloride from an amorphous feedstock. Z Anorg Allg Chem. 2013;639:465–7. 22. Pishchur DP, Drebushchak VA. Recommendations on DSC calibration. How to escape the transformation of a random error into the systematic error. J Therm Anal Calorim. 2016;124:951–8. 23. Squires GL. Practical physics. 4th ed. Cambridge: Cambridge University Press; 2001.