Инд. авторы: Thomas V.G., Daneu N., Rečnik A., Fursenko D.A., Demin S.P., Belinsky S.P., Gavryushkin P.N.
Заглавие: Crystallographic assembly of macroscopic crystals by subparallel splicing of multiple seeds
Библ. ссылка: Thomas V.G., Daneu N., Rečnik A., Fursenko D.A., Demin S.P., Belinsky S.P., Gavryushkin P.N. Crystallographic assembly of macroscopic crystals by subparallel splicing of multiple seeds // Crystal Growth & Design. - 2017. - Vol.17. - Iss. 2. - P.763-773. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.6b01616; РИНЦ: 29485344; SCOPUS: 2-s2.0-85011333431; WoS: 000393354100041;
Реферат: eng: The potential possibility of intergrowth of two bulk crystals to single crystal was demonstrated on the example of beryl, Be3Al2Si6O18, growing under hydrothermal conditions. The result has practical importance because it allows increase of the yield of useful product on a single growth cycle. The fine structure and composition of the area adjacent to the splicing boundary was investigated. It was demonstrated that the influence of the intergrowth border of two crystals spliced in parallel is entirely analogous to the affect of a twin boundary. This analogy extends as well on the specific morphology of the growth front generated by the boundary as on the growth velocity of the surfaces adjacent to the boundary that is increasing 3-10 times. In addition we show that the spliced crystals tend to align near single crystal orientation. The assumption on the nature of the driving forces of such impact was made. We also suggest assumptions about the nature of these orientational forces. © 2017 American Chemical Society.
Ключевые слова: Crystal orientation; Twin boundaries; Practical importance; Multiple seeds; Hydrothermal conditions; Growth velocity; Driving forces; Bulk crystals; Single crystals; Silicon wafers; Silicate minerals; Fine structures;
Издано: 2017
Физ. характеристика: с.763-773
Цитирование: 1. Flanigen, E. M.; Mumbach, N. R. Hydrothermal process for growing crystals having the structure of Beryll in an acid halide medium. U. S. Patent No. 3, 567, 643, 1971. 2. Lebedev, A. S.; Il'in, A. G.; Klyakhin, V. A. Hydrothermally grown beryls of gem quality (in Russian). In Morphology and Phase Equilibria of Minerals; Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria, 1982), 1986; Vol. 2, pp 403-411 (in Russian). 3. Kiefert, L.; Schmetzer, K. The microscopic determination of structural properties for the characterization of optical uniaxial natural and synthetic gemstones. Part 2: Examples for the applicability of structural features for the distinction of natural emerald from fluxgrown and hydrothermally-grown synthetic emerald. J. Gemmol. Proc. Gemmol. Assoc. G. B. 1991, 22, 427-438. 4. Lebedev, A. S.; Askhabov, A. M. Regeneration of beryl crystals. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 1984, 113 (5), 618-628 (in Russian).. 5. Schmetzer, K. Characterization of Russian hydrothermally-grown synthetic emeralds. J. Gemmol. Proc. Gemmol. Assoc. G. B. 1988, 21 (3), 145-164. 6. Schmetzer, K.; Schwarz, D.; Bernhardt, H.-J.; Häger, T. A new type of Tairus hydrothermally-grown synthetic emeralds, colored by vanadium and copper. J. Gemmol. 2006, 30 (1), 59-74. 7. Goldschmidt, V. Atlas der Krystallformen; Carl-Winters-Universitaetsbuchhandlung: Heidelberg, 1913; Vol. 1, p 182. 8. Gavryushkin, P. N.; Thomas, V. G. Growth Kinematics of the Regeneration Surfaces of Crystals. Crystallogr. Rep. 2009, 54 (2), 334-341. 9. Demianets, L. N.; Ivanov-Schitz, A. K. The growth mechanism and morphology of hydrothermally grown oxide compaunds: fractal approach. J. Phys.: Condens. Matter 2004, 16, 1313. 10. Bekker, T. B.; Barz, R.-U. Study of Growth Faces in Hydrothermally Obtained Beryl Single Crystals Using (556)-Orientated Seeds. Cryst. Growth Des. 2007, 7 (9), 1898-1903. 11. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of the Regeneration Surface Growth on Crystals. Crystallogr. Rep. 2012, 57 (6), 848. 12. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of Regeneration Surface Growth on a Single-Crystal Sphere. Crystallogr. Rep. 2015, 60 (4), 583-593. 13. Thomas, V. G.; Demin, S. P. Regeneration of nonsingular surfaces of beryl as the simultaneous growth of positive and negative crystals. Abstr. Intern. 1-st Conf. "Crystallogenesis and Mineralogy", 2001; pp 397-398 (in Russian). 14. Zaitseva, N.; Smolsky, I.; Carman, L. Growth phenomena in the surface layer and step generation from the crystal edges. J. Cryst. Growth 2001, 222, 249-262. 15. Shatsky, V. S.; Sitnikova, E. S.; Koz'menko, O. A.; Palessky, S. V.; Nikolaeva, I. V.; Zayachkovsky, A. A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russian Geology and Geophysics 2006, 47, 482-496. 16. Fersman, A. Ye. The elements of surface between two simultaneously crystallizing substances. DAN USSR 1922, 7-8 in Russian. 17. Wojciechowski, V. N.; Nikolaeva, V. N.; Velichko, I. A. On the specific features of potassium pentaborate crystal growth. Crystallography 1982, 27, 975-980 (in Russian).. 18. Thomas, V. G.; Demin, S. P.; Foursenko, D. A.; Bekker, T. B. Pulsation processes at hydrothermal crystal growth (beryl as example). J. Cryst. Growth 1999, 206, 203-214. 19. Prywer, J. Theoretical analysis of changes in habit of growing crystals in response to growth rates of individual faces. J. Cryst. Growth 1999, 197, 271-285. 20. Thomas, V. G.; Klyakhin, V. A. Specific features of incorporation of chromium in the beryl structure under hydrothermal conditions(experimental data). In Mineral Forming in Endogenic Processes, Sobolev, N. V., Ed.; Nauka: Novosibirsk, 1987; pp 60-67 (in Russian). 21. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146. 22. Thomas, V. G.; Bekker, T. B. The method of testing by temperature fluctuations (TTF) to investigate the heat-mass transfer in autoclave during the hydrothermal crystal growth. Proceeding IV Int. Conf. "Single Crystal Growth and Heat & Mass Transfer", Ginkin, V. P., Ed.; Obninsk, 2001; Vol. 3, pp 764-772. 23. de Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N.A.J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; Cölfen, H.; Dove, P. M. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. 24. Jordan, V.; Javornik, U.; Plavec, J.; Podgornik, A.; Rečnik, A. Self-Assembly of multilevel branched rutile-Type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 2016, 6, 24216. 25. Becke, F. Uber die Ausbildung der Zwillingskristalle. Fortschr. Mineral. 1911, 1, 1. 26. Tiller, W. A. The science of crystallization: microscopic interfacial phenomena; Cambridge University Press, 1995. 27. Putnis, A. Introduction to Mineral Science; Cambridge University Press, 1992. 28. Frank, F. C. Crystal dislocations-Elementary concepts & definitions. Phylosophical Magazine 1951, 42, 809-819. 29. Vainshtein, B. K.; Fridkin, V. M.; Indenbom, V. L. Modern Crystallography-II; Springer-Verlag: Berlin-Heidelberg, New York, 1982. 30. Drev, S.; Rečnik, A.; Daneu, N. Twinning and epitaxial growth of taaffeite-Type modulated structures in BeO-doped MgAl2O4. CrystEngComm 2013, 15, 2640-2647. 31. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.