Цитирование: | 1. Flanigen, E. M.; Mumbach, N. R. Hydrothermal process for growing crystals having the structure of Beryll in an acid halide medium. U. S. Patent No. 3, 567, 643, 1971.
2. Lebedev, A. S.; Il'in, A. G.; Klyakhin, V. A. Hydrothermally grown beryls of gem quality (in Russian). In Morphology and Phase Equilibria of Minerals; Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria, 1982), 1986; Vol. 2, pp 403-411 (in Russian).
3. Kiefert, L.; Schmetzer, K. The microscopic determination of structural properties for the characterization of optical uniaxial natural and synthetic gemstones. Part 2: Examples for the applicability of structural features for the distinction of natural emerald from fluxgrown and hydrothermally-grown synthetic emerald. J. Gemmol. Proc. Gemmol. Assoc. G. B. 1991, 22, 427-438.
4. Lebedev, A. S.; Askhabov, A. M. Regeneration of beryl crystals. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 1984, 113 (5), 618-628 (in Russian)..
5. Schmetzer, K. Characterization of Russian hydrothermally-grown synthetic emeralds. J. Gemmol. Proc. Gemmol. Assoc. G. B. 1988, 21 (3), 145-164.
6. Schmetzer, K.; Schwarz, D.; Bernhardt, H.-J.; Häger, T. A new type of Tairus hydrothermally-grown synthetic emeralds, colored by vanadium and copper. J. Gemmol. 2006, 30 (1), 59-74.
7. Goldschmidt, V. Atlas der Krystallformen; Carl-Winters-Universitaetsbuchhandlung: Heidelberg, 1913; Vol. 1, p 182.
8. Gavryushkin, P. N.; Thomas, V. G. Growth Kinematics of the Regeneration Surfaces of Crystals. Crystallogr. Rep. 2009, 54 (2), 334-341.
9. Demianets, L. N.; Ivanov-Schitz, A. K. The growth mechanism and morphology of hydrothermally grown oxide compaunds: fractal approach. J. Phys.: Condens. Matter 2004, 16, 1313.
10. Bekker, T. B.; Barz, R.-U. Study of Growth Faces in Hydrothermally Obtained Beryl Single Crystals Using (556)-Orientated Seeds. Cryst. Growth Des. 2007, 7 (9), 1898-1903.
11. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of the Regeneration Surface Growth on Crystals. Crystallogr. Rep. 2012, 57 (6), 848.
12. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of Regeneration Surface Growth on a Single-Crystal Sphere. Crystallogr. Rep. 2015, 60 (4), 583-593.
13. Thomas, V. G.; Demin, S. P. Regeneration of nonsingular surfaces of beryl as the simultaneous growth of positive and negative crystals. Abstr. Intern. 1-st Conf. "Crystallogenesis and Mineralogy", 2001; pp 397-398 (in Russian).
14. Zaitseva, N.; Smolsky, I.; Carman, L. Growth phenomena in the surface layer and step generation from the crystal edges. J. Cryst. Growth 2001, 222, 249-262.
15. Shatsky, V. S.; Sitnikova, E. S.; Koz'menko, O. A.; Palessky, S. V.; Nikolaeva, I. V.; Zayachkovsky, A. A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russian Geology and Geophysics 2006, 47, 482-496.
16. Fersman, A. Ye. The elements of surface between two simultaneously crystallizing substances. DAN USSR 1922, 7-8 in Russian.
17. Wojciechowski, V. N.; Nikolaeva, V. N.; Velichko, I. A. On the specific features of potassium pentaborate crystal growth. Crystallography 1982, 27, 975-980 (in Russian)..
18. Thomas, V. G.; Demin, S. P.; Foursenko, D. A.; Bekker, T. B. Pulsation processes at hydrothermal crystal growth (beryl as example). J. Cryst. Growth 1999, 206, 203-214.
19. Prywer, J. Theoretical analysis of changes in habit of growing crystals in response to growth rates of individual faces. J. Cryst. Growth 1999, 197, 271-285.
20. Thomas, V. G.; Klyakhin, V. A. Specific features of incorporation of chromium in the beryl structure under hydrothermal conditions(experimental data). In Mineral Forming in Endogenic Processes, Sobolev, N. V., Ed.; Nauka: Novosibirsk, 1987; pp 60-67 (in Russian).
21. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.
22. Thomas, V. G.; Bekker, T. B. The method of testing by temperature fluctuations (TTF) to investigate the heat-mass transfer in autoclave during the hydrothermal crystal growth. Proceeding IV Int. Conf. "Single Crystal Growth and Heat & Mass Transfer", Ginkin, V. P., Ed.; Obninsk, 2001; Vol. 3, pp 764-772.
23. de Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N.A.J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; Cölfen, H.; Dove, P. M. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.
24. Jordan, V.; Javornik, U.; Plavec, J.; Podgornik, A.; Rečnik, A. Self-Assembly of multilevel branched rutile-Type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 2016, 6, 24216.
25. Becke, F. Uber die Ausbildung der Zwillingskristalle. Fortschr. Mineral. 1911, 1, 1.
26. Tiller, W. A. The science of crystallization: microscopic interfacial phenomena; Cambridge University Press, 1995.
27. Putnis, A. Introduction to Mineral Science; Cambridge University Press, 1992.
28. Frank, F. C. Crystal dislocations-Elementary concepts & definitions. Phylosophical Magazine 1951, 42, 809-819.
29. Vainshtein, B. K.; Fridkin, V. M.; Indenbom, V. L. Modern Crystallography-II; Springer-Verlag: Berlin-Heidelberg, New York, 1982.
30. Drev, S.; Rečnik, A.; Daneu, N. Twinning and epitaxial growth of taaffeite-Type modulated structures in BeO-doped MgAl2O4. CrystEngComm 2013, 15, 2640-2647.
31. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.
|