Цитирование: | 1. Boehler, R. Temperatures in the Earth's core from melting point measurements of iron at high static pressures. Nature 363, 534-536 (1993).
2. Funtikov, A. Phase diagram of iron: Implications for the state of the Earth's core. Izv. Phys. Solid Earth 36, 958-964 (2000).
3. Funtikov, A. Phase diagram and melting curve of iron obtained using the data of static and shock-wave measurements. High Temp. 41, 850-864 (2003).
4. Li, J., Fei, Y. In Treatise on Geochemistry Vol. 2 Experimental constraints on core composition (eds Holland, H. D., Turekian, K. K. ) 521-546 (Elsevier-Pergamon, Oxford, 2003).
5. Hirose, K., Labrosse, S., Hernlund, J. Composition and state of the core. Annual Rev. Earth Planet. Sciences 41, 657-691 (2013).
6. Fei, Y., Murphy, C., Shibazaki, Y., Shahar, A., Huang, H. Thermal equation of state of hcp-iron: Constraint on the density deficit of Earth's solid inner core. Geophys. Res. Lett. 43, 6837-6843 (2016).
7. Swartzendruber, L. The Fe (Iron) System. J. Phase Equilibria 3, 161-165 (1982).
8. Tonkov, E. Y., Ponyatovsky, E. G. In Advances in Metallic Alloys V. 4 Phase transformations of elements under high pressure (eds Fridlyander, J. N., Eskin, D. G. ) 377 (CRC Press Boca Raton, Florida, 2005).
9. Desai, P. D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967-983 (1986).
10. Dinsdale, A. T. SGTE data for pure elements. Calphad 15, 317-425 (1991).
11. Klotz, S., Le Godec, Y., Strassle, T., Stuhr, U. The - triple point of iron investigated by high pressure-high temperature neutron scattering. App. Phys. Lett. 93, 091904 (2008).
12. Mao, H., Wu, Y., Chen, L., Shu, J., Jephcoat, A. P. Static compression of iron to 300 GPa and Fe0. 8Ni0. 2 alloy to 260 GPa: Implications for composition of the core. J. Geophys. Res. 95, 21737-21742 (1990).
13. Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y. The structure of iron in Earth's inner core. Science 330, 359-361 (2010).
14. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., Morard, G. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 340, 464-466 (2013).
15. Belonoshko, A. B., Ahuja, R., Johansson, B. Stability of the body-centred-cubic phase of iron in the Earth's inner core. Nature 424, 1032-1034 (2003).
16. Dubrovinsky, L., et al. Body-centered cubic iron-nickel alloy in Earth's core. Science 316, 1880-1883 (2007).
17. Komabayashi, T., Fei, Y., Meng, Y., Prakapenka, V. In-situ X-ray diffraction measurements of the - transition boundary of iron in an internally-heated diamond anvil cell. Earth Planet. Science Lett. 282, 252-257 (2009).
18. Komabayashi, T., Fei, Y. W. Internally consistent thermodynamic database for iron to the Earth's core conditions. J. Geophys. Res. 115, B03202 (2010).
19. Fei, Y., Brosh, E. Experimental study and thermodynamic calculations of phase relations in the Fe-C system at high pressure. Earth Planet. Science Lett. 408, 155-162 (2014).
20. Komabayashi, T. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth's core. J. Geophys. Res. 119, 4164-4177 (2014).
21. Saxena, S. K., Eriksson, G. Thermodynamics of iron at extreme pressures and temperatures. J. Phys. Chem. Solids 84, 70-74 (2015).
22. Lu, X.-G., Selleby, M., Sundman, B. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad 29, 68-89 (2005).
23. Anderson, O. L., Isaak, D. G. The dependence of the Anderson-Greisen parameter T upon compression at extreme conditions. J. Phys. Chem. Solids 54, 221-227 (1993).
24. Medvedev, A. B. Wide-range multiphase equation of state for iron. Combustion, Explosion, Shock Waves 50, 582-598 (2014).
25. Sakai, T., Ohtani, E., Hirao, N., Ohishi, Y. Stability field of the hcp-structure for Fe, Fe-Ni, Fe-Ni-Si alloys up to 3 Mbar. Geophys. Res. Lett. 38 (2011).
26. Nishihara, Y., et al. Isothermal compression of face-centered cubic iron. Amer. Miner. 97, 1417-1420 (2012).
27. Yamazaki, D., et al. P-V-T equation of state for epsilon-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils. Geophys. Res. Lett. 39, L20308 (2012).
28. Tsujino, N., et al. Equation of state of -Fe: Reference density for planetary cores. Earth Planet. Science Lett. 375, 244-253 (2013).
29. Dorogokupets, P. I., Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, NaCl-B2: Internally consistent high-temperature pressure scales. High Press. Res. 27, 431-446 (2007).
30. Dorogokupets, P. I., Oganov, A. R. Ruby, metals, MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, X-ray, thermochemical data at high temperatures and pressures. Phys. Rev. B 75, 024115 (2007).
31. Dorogokupets, P. I., Sokolova, T. S., Danilov, B. S., Litasov, K. D. Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W for quasi-hydrostatic conditions. Geodyn. Tectonophys. 3, 129-166 (2012).
32. Dorogokupets, P. I., Sokolova, T. S., Litasov, K. D. Thermodynamic properties of bcc-Fe to melting temperature and pressure to 15 GPa. Geodyn. Tectonophys. 5, 1033-1044 (2014).
33. Dorogokupets, P. I., Dymshits, A. M., Sokolova, T. S., Danilov, B. S., Litasov, K. D. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite and postperovskite and phase diagram of the Mg2SiO4 system at pressures to 130 GPa. Russ. Geol. Geophys. 56, 172-189 (2015).
34. Dorogokupets P. I., Sokolova T. S., Dymshits A. M., Litasov K. D. Thermodynamic properties of rock-forming oxides, -Al2O3, Cr2O3, -Fe2O3, Fe3O4 at high temperatures and pressures. Geodyn. Tectonophys. 7, 459-476 (2016).
35. Sokolova, T. S., Dorogokupets, P. I., Litasov, K. D. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt and other metals to 4 Mbars and 3000 K. Russ. Geol. Geophys. 54, 181-199 (2013).
36. Sokolova T. S., Dorogokupets P. I., Dymshits A. M., Danilov B. S., Litasov K. D. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput. Geoscience 94, 162-169 (2016).
37. Hillert, M., Jarl, M. A model for alloying in ferromagnetic metals. Calphad 2, 227-238 (1978).
38. Molodets, A., Molodets, M., Nabatov, S. Helmholtz'free energy of molten metals. High Temp. 36, 891-896 (1998).
39. Molodets, A., Molodets, M., Nabatov, S. Free energy of liquid diamond. Combustion, Explosion and Shock Waves 35, 185-190 (1999).
40. Molodets, A. Thermodynamic potentials and non-monotonic melting curve of sodium at high pressure. High Press. Res. 30, 325-331 (2010).
41. Zharkov, V. N., Kalinin, V. A. Equations of State of Solids at High Pressures and Temperatures (ed. Tybulewicz, A. ) 257 (Springer Science+ Business Media, New York, 1971).
42. Vinet, P., Ferrante, J., Rose, J. H., Smith, J. R. Compressibility of solids. J. Geophys. Res. 92, 9319-9325 (1987).
43. Dorogokupets, P. I. P-V-T Equations of state of MgO and thermodynamics. Phys. Chem. Miner. 37, 677-684 (2010).
44. Al'tshuler, L. V., Brusnikin, S. E., Kuz'menkov, E. A. Isotherms and Gruneisen functions for 25 metals. J. Appl. Mechan. Technic. Phys. 28, 129-141 (1987).
45. Jacobs, M. H., Schmid-Fetzer, R. Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method. Phys. Chem. Miner. 37, 721-739 (2010).
46. Iota, V., et al. Electronic structure and magnetism in compressed 3d transition metals. Appl. Phys. Lett. 90, 042505 (2007).
47. Ruban, A. V., Belonoshko, A. B., Skorodumova, N. V. Impact of magnetism on Fe under Earth's core conditions. Phys. Rev. B 87, 014405 (2013).
48. Brosh, E., Makov, G., Shneck, R. Z. Application of CALPHAD to high pressures. Calphad 31, 173-185 (2007).
49. Dewaele, A., et al. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 97, 215504 (2006).
50. Dewaele, A., Garbarino, G. Low temperature equation of state of epsilon-iron. Report No. HC-1679 (ESRF, Grenoble, 2014).
51. Liu, J., Lin, J.-F., Alatas, A., Bi, W. Sound velocities of bcc-Fe and Fe0. 85Si0. 15 alloy at high pressure and temperature. Phys. Earth Planet. Inter. 233, 24-32 (2014).
52. Fei, Y., et al. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. USA 104, 9182-9186 (2007).
53. Jephcoat, A. P., Mao, H. K., Bell, P. M. Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media. J. Geophys. Res. 91, 4677-4684 (1986).
54. Huang, E., Bassett, W. A., Tao, P. Pressure-temperature-volume relationship for hexagonal close packed iron determined by synchrotron radiation. J. Geophys. Res. 92, 8129-8135 (1987).
55. Mao, H. K., Bassett, W. A., Takahashi, T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. J. Appl. Phys. 38, 272-276 (1967).
56. Zhang, J., Guyot, F. Thermal equation of state of iron and Fe0. 91Si0. 09. Phys. Chem. Miner. 26, 206-211 (1999).
57. Decker, D. L. Equation of State of NaCl and Its Use as a Pressure Gauge in HighPressure Research. J. Appl. Phys. 36, 157-161 (1965).
58. Decker, D. L. High-pressure equation of state for NaCl, KCl, CsCl. J. Appl. Phys. 42, 3239-3244 (1973).
59. Strsle, T., Klotz, S., Kunc, K., Pomjakushin, V., White, J. S. Equation of state of lead from high-pressure neutron diffraction up to 8. 9 GPa and its implication for the NaCl pressure scale. Phys. Rev. B. 014101 (2014).
60. Brown, M. J. The NaCl pressure standard. J. Appl. Phys. 86, 5801-5808 (1999).
61. Antonangeli D., et al. Toward a mineral physics reference model for the Moon's core. PNAS 115, 3916-3919 (2015).
62. Funamori, N., Yagi, T., Uchida, T. High-pressure and high-temperature in situ X-ray diffraction study of iron to above 30 GPa using MA8-type apparatus. Geophys. Res. Lett. 23, 953-956 (1996).
63. Campbell, A. J., et al. High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers. Earth Planet. Science Lett. 286, 556-564 (2009).
64. Boehler, R., Vonbargen, N., Chopelas, A. Melting, thermal-expansion, phase-transitions of iron at high-pressures. J. Geophys. Res. 95, 21731-21736 (1990).
65. Basinski, Z. S., Hume-Rothery, W., Sutton, A. L. The lattice expansion of Iron. Proceedings of the Royal Society of London A 229, 459-467 (1955).
66. Kohlhaas, R., Dunner, P., Schmitz, P. N. Uber die temperaturabhangigkeit der gitterparameter von Eisen, Kobalt und Nickel im bereich hoher temperaturen. Zeitschrift fur Angewandte Physik 23, 245-249 (1967).
67. Sakai, T., et al. Equation of state of pure iron and Fe0. 9Ni0. 1 alloy up to 3 Mbar. Phys. Earth Planet. Inter. 228, 114-126 (2014).
68. Ishimatsu, N., et al. a-e transition pathway of iron under quasihydrostatic pressure conditions. Phys. Rev. B 90, 014422 (2014).
69. Dewaele, A., et al. Mechanism of the -d phase transformation in iron. Phys. Rev. B 91, 174105 (2015).
70. Zarkevich, N. A., Johnson, D. D. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure. Phys. Rev. B 91, 174194 (2015).
71. Tange, Y., Nishihara Y., Tsuchiya T. Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments. J. Geophys. Res. 114, B03208 (2009).
72. Dziewonski, A. M., Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297-356 (1981).
73. Boehler, R. The phase diagram of iron to 430 kbar. Geophys. Res. Lett. 13, 1153-1156 (1986).
74. Boehler, R., Santamar-Pez, D., Errandonea, D., Mezouar, M. Melting, density, anisotropy of iron at core conditions: new X-ray measurements to 150 GPa. J. Phys. 121, 022018 (2008).
75. Shen, G., Mao, H.-k., Hemley, R. J., Duffy, T. S., Rivers, M. L. Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373-376 (1998).
76. Jamieson, J. C., Fritz, J. N., Manghnani, M. H. In High Pressure Research in Geophysics Pressure measurement at high temperature in X-ray diffraction studies: gold as a primary standard (eds Akimoto, S., Manghnani, M. H. ) 27-48 (Center for Academic Publications, Tokyo, 1982).
77. Williams, Q., Jeanloz, R., Bass, J., Svendsen, B., Ahrens, T. J. The melting curve of iron to 250 gigapascals: A constraint on the temperature at Earth's center. Science 236, 181-182 (1987).
78. Mao, H. K., Bell, P. M., Shaner, J. W., Steinberg, D. J. Specific volume measurements of Cu, Mo, Pd, Ag and calibration of the ruby R1 fluorescence pressure gauge from 0. 06 to 1 Mbar. J. Appl. Phys. 49, 3276-3283 (1978).
79. Ma, Y., et al. In situ X-ray diffraction studies of iron to Earth-core conditions. Phys. Earth Planet. Inter. 143-144, 455-467 (2004).
80. Murphy, C. A., Jackson, J. M., Sturhahn, W., Chen, B. Melting and thermal pressure of hcp-Fe from the phonon density of states. Phys. Earth Planet. Inter. 188, 114-120 (2011).
81. Jackson, J. M., et al. Melting of compressed iron by monitoring atomic dynamics. Earth Planet. Science Lett. 362, 143-150 (2013).
82. Mao, H., Xu, J.-A., Bell, P. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673-4676 (1986).
83. Dewaele, A., et al. High-pressure-high-temperature equation of state of KCl and KBr. Phys. Rev. B 85, 214105 (2012).
84. Anderson, W. W., Ahrens, T. J. An equation of state for liquid iron and implications for the Earths core. J. Geophys. Res. 99, 4273-4284 (1994).
85. Jing, Z., et al. Sound velocity of Fe-S liquids at high pressure: implications for the Moon's molten outer core. Earth Planet. Science Lett. 396, 78-87 (2014).
86. Kuwabara, S. Sound velocity and elastic properties of Fe-Ni and Fe-Ni-C liquids at high pressure. Phys. Chem. Miner. 43, 229-236 (2016).
87. Alfe, D., Gillan, M. J., Price, G. D. The melting curve of iron at the pressures of the Earth's core from ab initio calculations. Nature 401, 462-464 (1999).
88. Alfe, D. Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B 79, 060101 (2009).
89. Sola, E., Alfe, D. Melting of Iron under Earth's Core Conditions from Diffusion Monte Carlo Free Energy Calculations. Phys. Rev. Lett. 103, 078501 (2009).
90. Belonoshko, A. B., Ahuja, R., Johansson, B. Quasi-Ab initio molecular dynamic study of Fe melting. Phys. Rev. Lett. 84, 3638-3641 (2000).
91. Belashchenko, D. K. Estimation of the thermodynamic characteristics of the Earth's core using the embedded atom model. Geochem. Internat. 52, 456-466 (2014).
92. Zhang, W.-J., Liu, Z.-Y., Liu, Z.-L., Cai, L.-C. Melting curves and entropy of melting of iron under Earth's core conditions. Phys. Earth Planet. Inter. 244, 69-77 (2015).
93. Brown, J. M., McQueen, R. G. Phase transitions, Greisen parameter, elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485-7494 (1986).
94. Nguyen, J. H., Holmes, N. C. Melting of iron at the physical conditions of the Earth's core. Nature 427, 339-342 (2004).
95. Ichikawa, H., Tsuchiya, T., Tange, Y. The P-V-T equation of state and thermodynamic properties of liquid iron. J. Geophys. Res. 119 (2014).
96. Umemoto, K., et al. Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett. 41, 2014GL061233 (2014).
97. Zhang, D., et al. Temperature of Earth's core constrained from melting of Fe and Fe0. 9Ni0. 1 at high pressures. Earth Planet. Science Lett. 447, 72-83 (2016).
98. Aitta, A. Iron melting curve with a tricritical point. J. Statist. Mechanic. 12, P12015 (2006).
99. Alf D., Voadlo, L., Price, G. D., Gillan, M. J. Melting curve of materials: theory versus experiments. J. Phys. Condens. Matter. 16, S973-S982 (2004).
|