Инд. авторы: Howarth G.H., Day J.M.D., Pernet-Fisher J.F., Goodrich C.A., Pearson D.G., Luo Y., Ryabov V.V., Taylor L.A.
Заглавие: Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS
Библ. ссылка: Howarth G.H., Day J.M.D., Pernet-Fisher J.F., Goodrich C.A., Pearson D.G., Luo Y., Ryabov V.V., Taylor L.A. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS // Geochimica et Cosmochimica Acta. - 2017. - Vol.203. - P.343-363. - ISSN 0016-7037. - EISSN 1872-9533.
Внешние системы: DOI: 10.1016/j.gca.2017.01.003; РИНЦ: 29479303; SCOPUS: 2-s2.0-85012075614; WoS: 000396795100019;
Реферат: eng: Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2
Ключевые слова: PGE; Ore formation; Native iron; Highly siderophile elements; Crustal contamination; Mass extinction; Siberian flood basalt;
Издано: 2017
Физ. характеристика: с.343-363
Цитирование: 1. Arndt, N.T., Czamanske, G.K., Walker, R.J., Chauvel, C., Fedorenko, V.A., Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu–Ni-PGE sulfide deposits. Econ. Geol. 98:3 (2003), 495–515. 2. Barnes, S.-J., Fiorentini, M.L., Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem. Geol. 257:1 (2008), 44–58. 3. Barnes, S.-J., Maier, W.D., Platinum-group element distributions in the Rustenburg layered suite of the Bushveld Complex, South Africa. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can. Inst. Min. Metal Spec. 54 (2002), 431–458. 4. Barnes, S.-J., Ripley, E.M. 2016. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. In (eds. Harvey, J., Day, J.M.D.), Highly Siderophile and strongly chalcophile elements in high-temperature geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 81, pp. 725–774. 5. Barnes, S.-J., Prichard, H.M., Cox, R.A., Fisher, P.C., Godel, B., The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits. Chem. Geol. 248:3 (2008), 295–317. 6. Bird, J.M., Weathers, M.S., Native iron occurrences of Disko island, Greenland. J. Geol., 1977, 359–371. 7. Brenan, J.M., Re–Os fractionation by sulfide melt–silicate melt partitioning: a new spin. Chem. Geol. 248:3 (2008), 140–165. 8. Brenan, J.M., Finnigan, C.F., McDonough, W.F., Homolova, V., Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: the importance of ferric iron. Chem. Geol. 302 (2012), 16–32. 9. Campbell, I.H., Naldrett, A.J., The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology 74:6 (1979), 1503–1506. 10. Chamberlain, J.A., McLeod, C.R., Traill, R.J., Lachance, G.R., Native metals in the Muskox intrusion. Can. J. Earth Sci. 2:3 (1965), 188–215. 11. Charlier, B., Namur, O., Toplis, M.J., Schiano, P., Cluzel, N., Higgins, M.D., Vander Auwera, J., Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 39:10 (2011), 907–910. 12. Chipman, J. 1973. C–Fe (Carbon–Iron), In Metals Handbook, Vol. 8 (8th ed.), Metals Park, Ohio, Am. Soc. for Metals, pp. 275–278. 13. Clarke, D.B., Pedersen, A.K., Tertiary volcanic province of West Greenland. Geol. Greenland, 364, 1976, 385. 14. Corgne, A., Wood, B.J., Fei, Y., C-and S-rich molten alloy immiscibility and core formation of planetesimals. Geochim. Cosmochim. Acta 72:9 (2008), 2409–2416. 15. Day, J.M.D., Hotspot volcanism and highly siderophile elements. Chem. Geol. 341 (2013), 50–74. 16. Day, J.M.D., Pearson, D.G., Hulbert, L.J., Rhenium–osmium isotope and platinum-group element constraints on the origin and evolution of the 1 · 27 Ga Muskox layered intrusion. J. Petrol. 49:7 (2008), 1255–1295. 17. Day, J.M.D., Pearson, D.G., Macpherson, C.G., Lowry, D., Carracedo, J.C., Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim. Cosmochim. Acta 74:22 (2010), 6565–6589. 18. Duke, M.B., Metallic iron in basaltic achondrites. J. Geophys. Res. 70:6 (1965), 1523–1527. 19. Fleet, M.E., Stone, W.E., Partitioning of platinum-group elements in the Fe–Ni–S system and their fractionation in nature. Geochim. Cosmochim. Acta 55:1 (1991), 245–253. 20. Fleet, M.E., Liu, M., Crocket, J.H., Partitioning of trace amounts of highly siderophile elements in the Fe–Ni–S system and their fractionation in nature. Geochim. Cosmochim. Acta 63:17 (1999), 2611–2622. 21. Fundal, E., The Uivfaq Dike and Related Hybrid Dikes from Southern Disko. 1975, Field Relations by Erling Fundal, West Greenland CA Reitzel. 22. Goodrich, C.A., Petrogenesis of native iron-carbon alloys, Disko Island. 1983, Cornell University, Greenland. 23. Goodrich, C.A., Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim. Cosmochim. Acta 48:5 (1984), 1115–1126. 24. Goodrich, C.A., Bird, J.M., Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island: the role of carbon in mafic magmas. J. Geol., 1985, 475–492. 25. Horan, M.F., Walker, R.J., Morgan, J.W., Grossman, J.N., Rubin, A.E., Highly siderophile elements in chondrites. Chemical Geology 196:1 (2003), 27–42. 26. Hornstein, F.F., Mitteilung fiber das Vorkommen yon makroskopischen Einschliissen gediegenen Eisens in Basalt aus der Gegend von Cassel. Zentralbl. Mineral. 1907 (1907), 276–279. 27. Howarth, G.H., Prevec, S.A., Trace element, PGE, and Sr–Nd isotope geochemistry of the Panzhihua mafic layered intrusion, SW China: constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system. Geochim. Cosmochim. Acta 120 (2013), 459–478. 28. Iacono-Marziano, G., Gaillard, F., Scaillet, B., Polozov, A.G., Marecal, V., Pirre, M., Arndt, N.T., Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments. Earth Planet. Sci. Lett. 357–358 (2012), 319–326. 29. Ireland, T.J., Walker, R.J., Garcia, M.O., Highly siderophile element and 187 Os isotope systematics of Hawaiian picrites: implications for parental melt composition and source heterogeneity. Chem. Geol. 260:1 (2009), 112–128. 30. Kamenetsky, V.S., Charlier, B., Zhitova, L., Sharygin, V., Davidson, P., Feig, S., Magma chamber–scale liquid immiscibility in the Siberian Traps represented by melt pools in native iron. Geology 41:10 (2013), 1091–1094. 31. Keays, R.R., Lightfoot, P.C., Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Miner. Deposita 42:4 (2007), 319–336. 32. Lambert, D.D., Foster, J.G., Frick, L.R., Li, C.H.U.S.I., Naldrett, A.J., Re–Os isotopic systematics of the Voisey's bay Ni–Cu–Co magmatic ore system, Labrador, Canada. Lithos 47:1 (1999), 69–88. 33. Lambert, D.D., Frick, L.R., Foster, J.G., Li, C., Naldrett, A.J., Re-Os isotope systematics of the Voisey's Bay Ni–Cu–Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Econ. Geol. 95:4 (2000), 867–888. 34. Li, C., Ripley, E.M., Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Miner. Deposita 40:2 (2005), 218–230. 35. Li, C., Ripley, E.M., Naldrett, A.J., A new genetic model for the giant Ni–Cu-PGE sulfide deposits associated with the Siberian flood basalts. Econ. Geol. 104:2 (2009), 291–301. 36. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S., Fedorenko, V.A., Doherty, W., Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol. 114:2 (1993), 171–188. 37. Longhi, J., Walker, D., Grove, T.L., Stolper, E., Hays, J.F., The petrology of the Apollo 17 mare basalts. Lunar and Planetary Science Conference Proceedings, Vol. 5, 1974, 447–469. 38. Mann, U., Frost, D.J., Rubie, D.C., Becker, H., Audétat, A., Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures-Implications for the origin of highly siderophile element concentrations in the Earth's mantle. Geochim. Cosmochim. Acta 84 (2012), 593–613. 39. Marsh, B.D., Dynamics of magmatic systems. Elements 2:5 (2006), 287–292. 40. Medenbach, O., El Goresy, A., Ulvöspinel in native iron-bearing assemblages and the origin of these assemblages in basalts from Ovifak, Greenland, and Bühl, Federal Republic of Germany. Contrib. Miner. Petrol. 80:4 (1982), 358–366. 41. Mungall, J.E., Brenan, J.M., Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 125 (2014), 265–289. 42. Naldrett, A.J., Lightfoot, P.C., Fedorenko, V., Doherty, W., Gorbachev, N.S., Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87:4 (1992), 975–1004. 43. Nordenskjöld, A.E., Account of an Expedition to Greenland in the Year 1870, Part I–V. Geol. Mag., 1872, 1872. 44. Oleinikov, B.V., Okrugin, A.V., Tomshin, M.D., Levashov, V.K., Varganov, A.S., Kopylova, A.G., Pankov, Y.U., Native iron formation in platform basic rocks. 1985, Yakutian Scientific Center, Siberian Branch of the Russian Academy of Sciences, Yakutsk (in Russian). 45. Papike, J., Taylor, L., Simon, S., Lunar minerals. Lunar Sourcebook, 1991, 121–181. 46. Pašava, J., Anoxic sediments—an important environment for PGE; an overview. Ore Geol. Rev. 8:5 (1993), 425–445. 47. Pedersen, A.K., Armalcolite-bearing Fe–Ti oxide assemblages in graphite-equilibrated salic volcanic rocks with native iron from Disko, central West Greenland. Contrib. Miner. Petrol. 77:4 (1981), 307–324. 48. Pernet-Fisher, J.F., Day, J.M., Howarth, G.H., Ryabov, V.V., Taylor, L.A., Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions. Earth Planet. Sci. Lett. 460 (2017), 201–212. 49. Ramdohr, P. 1953. Neue Beobachtungen am Bfihl-Eisen. Sitzungsber dt Akad Wissensch Berlin, K1 Mathem Allg Nat Wiss 1952/7. 50. Roy-Barman, M., Wasserburg, G.J., Papanastassiou, D.A., Chaussidon, M., Osmium isotopic compositions and Re–Os concentrations in sulfide globules from basaltic glasses. Earth Planet. Sci. Lett. 154:1 (1998), 331–347. 51. Ryabov, Y.Y., Anoshin, G.N., Platinum-iron metallization in intrusive traps of the Siberian Platform. Geol. Geofiz. 40:2 (1999), 162–174. 52. Ryabov, V.V., Lapkovsky, A.A., Native iron (–platinum) ores from the Siberian Platform trap intrusions. Aust. J. Earth Sci. 57:6 (2010), 707–736. 53. Ryabov, V.V., Lapkovsky, A.A., Unique polymineral association of Co–Ni and noble metal phases in gabbro-dolerite of the Dzhaltul trap intrusion (Siberian Platform). Doklady Earth Sciences, 2010, MAIK Nauka/Interperiodica, 1325–1329 (Vol. 434, No. 2). 54. Ryabov, V.V., Pavlov, A.L., Lopatin, G.G., Native iron of the Siberian traps. 1985, Nauka Publisher, Novosibirsk (in Russian). 55. Ryabov, V.V., Shevko, A.Y., Gora, M.P., Intrusive complexes of the Noril'sk region. Trap Magmatism and Ore Formation in the Siberian Noril'sk Region, 2014, Springer, Netherlands, 93–206. 56. Song, X.Y., Keays, R.R., Xiao, L., Qi, H.W., Ihlenfeld, C., Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem. Geol. 262:3 (2009), 246–261. 57. Sun, W., Bennett, V.C., Eggins, S.M., Kamenetsky, V.S., Arculus, R.J., Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature 422:6929 (2003), 294–297. 58. Taylor, L.A., Liu, Y., Sulfide inclusions in diamonds: not monosulfide solid solution. Russ. Geol. Geophys. 50 (2009), 1201–1211. 59. Taylor, L.A., Day, J.M.D., Goodrich, C.A., Howarth, G.H., Pernet-Fisher, J.F., Barry, P.H., Ryabov, V., & Pokhilenko, N.P. 2014. Metallic-Fe deposits in basalts: Siberia, Greenland, and Germany. In 21st Annual meeting, The International Mineralogical Association Conf., Johannesburg, SA, Scientific Program, Extended Abstract. 60. Toplis, M.J., Carroll, M.R., An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic systems. J. Petrol. 36:5 (1995), 1137–1170. 61. Treiman, A.H., Lindstrom, D.J., Schwandt, C.S., Franchi, I.A., Morgan, M.L., A “mesosiderite” rock from Northern Siberia, Russia: not a meteorite. Meteorit. Planet. Sci. 37:S12 (2002), B13–B22. 62. Wang, C., Hirama, J., Nagasaka, T., Ban-Ya, S., Phase equilibria of liquid Fe–SC ternary system. ISIJ Int. 31:11 (1991), 1292–1299. 63. Yokoyama, T., Walker, D., Walker, R.J., Low osmium solubility in silicate at high pressures and temperatures. Earth Planet. Sci. Lett. 279:3 (2009), 165–173. 64. Zhou, M.F., Chen, W.T., Wang, C.Y., Prevec, S.A., Liu, P.P., Howarth, G.H., Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe–Ti–V oxide deposits, SW China. Geosci. Front. 4:5 (2013), 481–502.