Инд. авторы: Yevshin I.S., Sharipov R.N., Valeev T., Kel A., Kolpakov F.
Заглавие: GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments
Библ. ссылка: Yevshin I.S., Sharipov R.N., Valeev T., Kel A., Kolpakov F. GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments // Nucleic Acids Research. - 2017. - Vol.45. - Iss. D1. - P.D61-D67. - ISSN 0305-1048. - EISSN 1362-4962.
Внешние системы: DOI: 10.1093/nar/gkw951; РИНЦ: 29483744; SCOPUS: 2-s2.0-85016108719; WoS: 000396575500010;
Реферат: eng: GTRD - Gene Transcription Regulation Database (http://gtrd.biouml.org) - is a database of transcription factor binding sites (TFBSs) identified by ChIPseq experiments for human and mouse. Raw ChIPseq data were obtained from ENCODE and SRA and uniformly processed: (i) reads were aligned using Bowtie2; (ii) ChIP-seq peaks were called using peak callers MACS, SISSRs, GEM and PICS; (iii) peaks for the same factor and peak callers, but different experiment conditions (cell line, treatment, etc.), were merged into clusters; (iv) such clusters for different peak callers were merged into metaclusters that were considered as non-redundant sets of TFBSs. In addition to information on location in genome, the sets contain structured information about cell lines and experimental conditions extracted from descriptions of corresponding ChIP-seq experiments. A web interface to access GTRD was developed using the BioUML platform. It provides: (i) browsing and displaying information; (ii) advanced search possibilities, e.g. search of TFBSs near the specified gene or search of all genes potentially regulated by a specified transcription factor; (iii) integrated genome browser that provides visualization of the GTRD data: read alignments, peaks, clusters, metaclusters and information about gene structures from the Ensembl database and binding sites predicted using position weight matrices from the HOCOMOCO database. © The Author(s) 2016.
Издано: 2017
Цитирование: 1. Galas, D. and Schmitz, A. (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res., 5, 3157-3170. 2. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823-837. 3. Johnson, D.S., Mortazavi, A., Myers, R.M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497-1502. 4. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P, Brockman, W, Kim, TK, Koche, R.P. et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553-560. 5. Landt, S.G., Marinov, G.K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B.E., Bickel, P., Brown, J.B., Cayting, P. et al. (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res., 22, 1813-1831. 6. Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Nannett, N., Kanin, E. et al. (2000) Genome-wide location and function of DNA binding proteins. Science, 290, 2306-2309. 7. Rhee, H.S. and Pugh, B.F. (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell, 147, 1408-1419. 8. Fullwood, M.J. and Ruan, Y. (2009) ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem., 107, 30-39. 9. Kodama, Y., Shumway, M. and Leinonen, R. (2012) International nucleotide sequence database collaboration. The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res., 40, D54-D56. 10. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M. et al. (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res., 41, D991-D995. 11. Wingender, E., Schoeps, T., Haubrock, M. and Dönitz, J. (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res., 43, D97-D102. 12. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359. 13. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-2079. 14. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W. et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137. 15. Narlikar, L. and Jothi, R. (2012) ChIP-Seq data analysis: identification of protein-DNA binding sites with SISSRs peak-finder. Methods Mol. Biol., 802, 305-322 16. Guo, Y., Mahony, S. and Gifford, D.K. (2012) High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol., 8, e1002638. 17. Zhang, X., Robertson, G., Krzywinski, M., Ning, K., Droit, A., Jones, S. and Gottardo, R. (2011) PICS: probabilistic inference for ChIP-seq. Biometrics, 67, 151-163. 18. Valeev, T., Yevshin, I. and Kolpakov, F. (2013) BioUML Genome Browser. Virt. Biol., 1, 15-26. 19. Kulakovskiy, I.V., Vorontsov, I.E., Yevshin, I.S., Soboleva, A.V., Kasianov, A.S., Ashoor, H., Ba-Alawi, W., Bajic, V.B., Medvedeva, Y.A., Kolpakov, F.A. et al. (2016) HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res., 44, D116-D125. 20. Wang, J., Zhuang, J., Iyer, S., Lin, X., Whitfield, T.W., Greven, M.C., Pierce, B.G., Dong, X., Kundaje, A., Cheng, Y. et al. (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res., 22, 1798-1812. 21. Sun, H., Qin, B., Liu, T., Wang, Q., Liu, J., Wang, J., Lin, X., Taing, L., Rao, P.K., Brown, M. et al. (2013) Data and text mining CistromeFinder for ChIP-seq and DNase-seq data reuse. Bioinformatics, 29, 1352-1354. 22. Yang, J.H., Li, J.H., Jiang, S., Zhou, H. and Qu, L.H. (2013) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res., 41, D177-D187. 23. Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K. et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res., 34, D108-D110. 24. Mendoza-Parra, M.A., Saravaki, V., Cholley, P.E., Blum, M., Billoré, B. and Gronemeyer, H. (2016) Antibody performance in ChIP-sequencing assays: from quality scores of public data sets to quantitative certification. F1000Res., 5, 54. 25. Halbritter, F., Kousa, A.I. and Tomlinson, S.R. (2014) GeneProf data: a resource of curated, integrated and reusable high-throughput genomics experiments. Nucleic Acids Res., 42, D851-D858. 26. Hempen, P.M., Phillips, K.M., Conway, P.S., Sandoval, K.H., Schneeman, T.A., Wu, H.J. and Kaetzel, C.S. (2002) Transcriptional regulation of the human polymeric Ig receptor gene: analysis of basal promoter elements. J. Immunol., 169, 1912-1921. 27. Bruno, M.E., West, R.B., Schneeman, T.A., Bresnick, E.H. and Kaetzel, C.S. (2004) Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene. Mol. Immunol., 40, 695-708.