Цитирование: | 1. Petrovich, M. N. et al. Demonstration of amplified data transmission at 2 μm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Optics Express 21, 28559-69 (2013).
2. Li, Z. et al. Thulium-doped fiber amplifier for optical communications at 2 μm. Opt. Express 21, 9289-9297 (2013).
3. Pang, M., He, W., Jiang, X. & J., R. S. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat Photon 10, 454-458 (2016).
4. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat Photon 4, 471-476 (2010).
5. Rohrmann, P., Hause, A. & Mitschke, F. Solitons beyond binary: possibility of fibre-optic transmission of two bits per clock period. Scientific Reports 2, 866 (2012).
6. Komarov, A., Komarov, K., Haboucha, A. & Sanchez, F. Information sequences of bound solitons. In Mediterranean Winter, 2008. ICTON-MW 2008. 2nd ICTON, 1-4 (2008).
7. Gumenyuk, R., Gaponenko, M. S., Yumashev, K. V., Onushchenko, A. A. & Okhotnikov, O. G. Vector soliton bunching in thuliumholmium fiber laser mode-locked with pbs quantum-dot-doped glass absorber. Ieee journal of quantum electronics 48, 903-907 (2012).
8. Grudinin, A. B. & Gray, S. Passive harmonic mode locking in soliton fiber lasers. Journal of the Optical Society of America B 14, 144 (1997).
9. Lee, C.-C. The Current Trends of Optics and Photonics, vol. 25 (Springer, 2014).
10. Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. Multisoliton solutions of the complex ginzburg-landau equation. Physical review letters 79, 4047-4051 (1997).
11. Afanasjev, V. V., Malomed, B. A. & Chu, P. L. Stability of bound states of pulses in the Ginzburg-Landau equations. Physical Review E 56, 6020-6025 (1997).
12. Hause, A., Hartwig, H., Bohm, M. & Mitschke, F. Binding mechanism of temporal soliton molecules. Physical Review A 78, 063817 (2008).
13. Agrawal, G. P. Nonlinear Fiber Optics. Optics and Photonics (Academic Press, 2007).
14. Tang, D. Y., Zhao, L. M., Zhao, B. & Liu, A. Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 72, 043816 (2005).
15. Komarov, A., Leblond, H. & Sanchez, F. m. c. Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005).
16. Hideur, A. et al. Ultra-short bound states generation with a passively mode-locked high-power yb-doped double-clad fiber laser. Optics Communications 225, 71-78 (2003).
17. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Physical review letters 95, 143902 (2005).
18. Gordon, J. P. Interaction forces among solitons in optical fibers. Optics Letters 8, 596 (1983).
19. Akhmediev, N. N., Ankiewicz, A. & Soto-Crespo, J. M. Stable soliton pairs in optical transmission lines and fiber lasers. Journal of the Optical Society of America B 15, 515 (1998).
20. Crasovan, L.-C. et al. Soliton molecules: Robust clusters of spatiotemporal optical solitons. Phys. Rev. E 67, 046610 (2003).
21. Feng, X., Tam, H.-y. & Wai, P. K. A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarisation rotation. Optics Express 14, 8205 (2006).
22. Yan, Z. et al. Switchable multi-wavelength Tm-doped mode-locked fiber laser. Optics letters 40, 1916-9 (2015).
23. Yan, Z. et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarisation evolution. Optics express 23, 4369-76 (2015).
24. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat Photon 6, 84-92 (2012).
25. Tsatourian, V. et al. Polarisation dynamics of vector soliton molecules in mode locked fibre laser. Scientific reports 3, 3154 (2013).
26. Grelu, P. & Akhmediev, N. Group interactions of dissipative solitons in a laser cavity: the case of 2 + 1. Opt. Express 12, 3184-3189 (2004).
27. Grelu, P., Beal, J. & Soto-Crespo, J. M. Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime. Opt. Express 11, 2238-2243 (2003).
28. Zhao, L. M., Tang, D. Y., Cheng, T. H., Tam, H. Y. & Lu, C. Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion. Appl. Opt. 46, 4768-4773 (2007).
29. Seong, N. H. & Kim, D. Y. Experimental observation of stable bound solitons in a figure-eight fiber laser. Opt. Lett. 27, 1321-1323 (2002).
30. Gui, L., Xiao, X. & Yang, C. Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser. J. Opt. Soc. Am. B 30, 158-164 (2013).
31. Li, L., Ruan, Q., Yang, R., Zhao, L. & Luo, Z. Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser. Opt. Express 24, 21020-21026 (2016).
32. Jin, X., Wang, X., Wang, X. & Zhou, P. Tunable multiwavelength mode-locked tm/ho-doped fiber laser based on a nonlinear amplified loop mirror. Appl. Opt. 54, 8260-8264 (2015).
33. Wang, P. et al. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarisation evolution. Opt. Lett. 41, 2254-2257 (2016).
34. Chernysheva, M. A. et al. Higher-order soliton generation in hybrid mode-locked thulium-doped fiber ring laser. Ieee journal of selected topics in quantum electronics 20, 425-432 (2014).
35. Sharp, R. C., Spock, D. E., Pan, N. & Elliot, J. 190-fs passively mode-locked thulium fiber laser with a low threshold. Optics Letters 21, 881 (1996).
36. Kivisto, S. et al. 2 watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber. In Photonics Europe, 69980Q-69980Q-8 (International Society for Optics and Photonics, 2008).
37. Solodyankin, M. A. et al. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Optics Letters 33, 1336 (2008).
38. Mou, C., Arif, R., Rozhin, A. & Turitsyn, S. Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber. Optical Materials Express 2, 884 (2012).
39. Hasan, T. et al. Nanotube-polymer composites for ultrafast photonics. Advanced Materials 21, 3874-3899 (2009).
40. Sobon, G. et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Optics Express 21, 12797-802 (2013).
41. Chernysheva, M. et al. Carbon nanotubes for ultrafast fibre lasers. Nanophotonics (2016).
42. Wang, J. et al. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Scientific Reports 6, 28885 (2016).
43. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803-10 (2010).
44. Bao, Q. et al. Graphene-polymer nanofiber membrane for ultrafast photonics. Advanced functional materials 20, 782-791 (2010).
45. Sun, Z., Hasan, T. & Ferrari, A. C. Ultrafast lasers mode-locked by nanotubes and graphene. Physica E: Low-Dimensional Systems and Nanostructures 44, 1082-1091 (2012).
46. Wang, Y. et al. Harmonic mode locking of bound-state solitons fiber laser based on mos2 saturable absorber. Opt. Express 23, 205-210 (2015).
47. Mao, D. et al. WS2 mode-locked ultrafast fiber laser. Scientific Reports 5, 7965 (2015).
48. Woodward, R. I. et al. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Optics Express 23, 20051-61 (2015).
49. Wang, Q., Chen, T. & Chen, K. Mode-locked ultrafast Thulium fiber laser with all-fiber dispersion management. Lasers and Electro- Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (2010).
50. Rudy, C. W., Urbanek, K. E., Digonnet, M. J. F. & Byer, R. L. Amplified 2-μm Thulium-Doped All-Fiber Mode-Locked Figure-Eight Laser. Lightwave Technology, Journal of 31, 1809-1812 (2013).
51. Chernysheva, M. A. et al. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber. Optics Express 20, B124-30 (2012).
52. Chernykh, D. S. et al. Hybrid mode-locked erbium-doped all-fiber soliton laser with adistributed polarizer. Appl. Opt. 53, 6654-6662 (2014).
53. Woodward, R. I. et al. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research 3, A30 (2015).
54. Liverini, V. et al. Low-loss GaInNAs saturable absorber mode locking a 1.3-μm solid-state laser. Applied Physics Letters 84, 4002-4004 (2004).
55. Shen, C., Brozena, A. H. & Wang, Y. Double-walled carbon nanotubes: challenges and opportunities. Nanoscale 3, 503-18 (2011).
56. Nakamura, A. & Hikosaka, N. Third-order nonlinear optical response in double-walled carbon nanotubes. Journal of Luminescence 129, 1722-1725 (2009).
57. Hasan, T. et al. Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. Acs nano 8, 4836-4847 (2014).
58. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano letters 5, 511-4 (2005).
59. Kamaraju, N., Kumar, S. & Kim, Y. Double walled carbon nanotubes as ultrafast optical switches. Applied Physics Letters 95, 081106 (2009).
60. Zhang, M. et al. Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express 21, 23261-71 (2013).
61. Mukhopadhyay, K. et al. Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method. Chemical Physics Letters 303, 117-124 (1999).
62. Flahaut, E., Bacsa, R., Peigney, A. & Laurent, C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications 12, 1442-3 (2003).
63. Osswald, S., Flahaut, E. & Gogotsi, Y. In situ raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes. Chemistry of materials 18, 1525-1533 (2006).
64. Hirori, H., Matsuda, K. & Kanemitsu, Y. Exciton energy transfer between the inner and outer tubes in double-walled carbon nanotubes. Physical Review B 78, 113409 (2008).
65. Liu, K., Deslippe, J., Xiao, F. & Capaz, R. An atlas of carbon nanotube optical transitions. Nature Nanotechnology 7, 325-329 (2012).
66. Silfvast, W. T. Laser Fundamentals. 2 ed. (Cambridge University Press, 2014).
67. Gambetta, A. et al. Sub-100 fs two-color pump-probe spectroscopy of single wall carbon nanotubes with a 100 mhz er-fiber laser system. Opt. Express 16, 11727-11734 (2008).
68. Stoica, V. A., Sheu, Y.-M., Reis, D. A. & Clarke, R. Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling. Opt. Express 16, 2322-2335 (2008).
69. Rmmeli, M. H. et al. Catalyst volume to surface area constraints for nucleating carbon nanotubes. The journal of physical chemistry. B 111, 8234-41 (2007).
70. Kurtner, F. X., der Au, J. A. & Keller, U. Mode-locking with slow and fast saturable absorbers-whats the difference? IEEE Journal of Selected Topics in Quantum Electronics 4, 159-168 (1998).
71. Kieu, K. & Wise, F. W. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE photonics technology letters: a publication of the IEEE Laser and Electro-optics Society 21, 128-130 (2009).
72. Song, Y.-W., Yamashita, S., Einarsson, E. & Maruyama, S. All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film. Optics letters 32, 1399-401 (2007).
73. Choi, S. Y., Rotermund, F., Jung, H., Oh, K. & Yeom, D.-I. Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. Optics Express 17, 21788 (2009).
74. Kharenko, D. S. et al. Generation and scaling of highly-chirped dissipative solitons in an yb-doped fiber laser. Laser Physics Letters 9, 662 (2012).
75. Haus, H. A. Theory of mode locking with a fast saturable absorber. Journal of Applied Physics 46, 3049-3058 (1975).
76. Kelly, S. Characteristic sideband instability of periodically amplified average soliton. Electronics Letters 28, 806 (1992).
77. Malomed, B. A. Bound states of envelope solitons. Physical Review E 47, 2874-2880 (1993).
|