Инд. авторы: Zhukov V.P., Rubenchik A.M., Fedoruk M.P., Bulgakova N.M.
Заглавие: Interaction of doughnut-shaped laser pulses with glasses
Библ. ссылка: Zhukov V.P., Rubenchik A.M., Fedoruk M.P., Bulgakova N.M. Interaction of doughnut-shaped laser pulses with glasses // Journal of the Optical Society of America B: Optical Physics. - 2017. - Vol.34. - Iss. 2. - P.463-471. - ISSN 0740-3224. - EISSN 1520-8540.
Внешние системы: DOI: 10.1364/JOSAB.34.000463; РИНЦ: 29481787; SCOPUS: 2-s2.0-85011860355; WoS: 000394028400032;
Реферат: eng: Non-Gaussian laser beams can open new opportunities for microfabrication, including ultrashort laser direct writing. Using a model based on Maxwell's equations, we have investigated the dynamics of doughnut-shaped laser beams focused inside fused silica glass, in comparison with Gaussian pulses of the same energy. The laser propagation dynamics reveals intriguing features of beam splitting and sudden collapse toward the beam axis, overcoming the intensity clamping effect. The resulting structure of light absorption represents a very hot, hollow nanocylinder, which can lead to an implosion process that brings matter to extreme thermodynamic states. Monitoring the simulations of the laser beam scattering has shown a considerable difference in both the blueshift and the angular distribution of scattered light for different laser energies, suggesting that investigations of the spectra of scattered radiation can be used as a diagnostic of laser-produced electron plasmas in transparent materials. © 2017 Optical Society of America.
Ключевые слова: Ultrashort Laser; Transparent material; Thermodynamic state; Shaped laser pulse; Scattered radiations; Laser propagation; Electron plasmas; Clamping effects; Maxwell equations; Laser beams; Glass; Gaussian beams; Fused silica; Electromagnetic wave absorption; Angular distribution; Optical waveguides; Light absorption;
Издано: 2017
Физ. характеристика: с.463-471
Цитирование: 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). 2. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). 3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459-468 (1996). 4. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997). 5. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999). 6. C. B. Schaffer, A. Brodeur, J. F. Garca, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). 7. K. Minoshima, A. M. Kowalewicz, E. P. Ippen, and J. G. Fujimoto, "Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645-652 (2002). 8. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses," Phys. Rev. B 71, 125435 (2005). 9. A.M. Streltsov and N.M. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002). 10. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002). 11. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerlullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003). 12. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003). 13. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Photonics 2, 219-225 (2008). 14. K. Mishchik, C. D'Amico, P. K. Velpula, C. Maclair, A. Boukenter, Y. Ouerdane, and R. Stoian, "Ultrafast laser induced electronic and structural modifications in bulkfused silica," J. Appl. Phys. 114, 133502 (2013). 15. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, "On the rewriting of ultrashort pulse-induced nanogratings," Opt. Lett. 40, 2049-2052 (2015). 16. E. G. Gamaly, A. Vailionis, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, "Warm dense matter at the bench top: fs-laser-induced confined micro-explosion," High Energy Density Phys. 8,13-17 (2012). 17. N. M. Bulgakova, V. P. Zhukov, Y. P. Meshcheryakov, L. Gemini, J. Brajer, D. Rostohar, and T. Mocek, "Pulsed laser modification of transparent dielectrics: what can be foreseen and predicted in numerical experiments," J. Opt. Soc. Am. B 31, C8-C14 (2014). 18. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ""Quill" writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151120 (2007). 19. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, "Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials," Opt. Express 18, 24673-24678 (2010). 20. A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007). 21. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, and A. Rosenfeld, "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, 043506 (2007). 22. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, "Morphology of femtosecond laser modification of bulk dielectrics," Opt. Express 19, 271-282 (2011). 23. H. Schmitz and V. Mezentsev, "Full-vectorial modeling of femtosecond pulses for laser inscription of photonic structures," J. Opt. Soc. Am. B 29, 1208-1217 (2012). 24. N. M. Bulgakova, V. P. Zhukov, and Y. P. Meshcheryakov, "Theoretical treatments of ultrashort pulse laser processing of transparent materials: towards understanding the volume nanograting formation and "quill" writing effect," Appl. Phys. B 113, 437-449 (2013). 25. N. M. Bulgakova and V. P. Zhukov, "Continuum models of ultrashort laser-matter interaction in application to wide-bandgap dielectrics," in Laser-Surface Interactions for New Materials Production, M. Castillejo, P. M. Ossi, and L. Zhigilei, eds., Vol. 191 of Springer Series in Materials Science (Springer, 2013), pp. 101-124. 26. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, "Flipping the sign of refractive index changes in ultra-fast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates," Phys. Rev. B 77, 104205 (2008). 27. A. V. Dostovalov, A. A. Wolf, S. A. Babin, M. V. Dubov, and V. K. Mezentsev, "Numerical investigation of the effect of the temporal pulse shape on modification of fused silica by femtosecond pulses," Quantum Electron. 42, 799-804 (2012). 28. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, "Materials processing with a tightly focused femtosecond laser vortex pulse," Opt. Lett. 35, 3417-3419 (2010). 29. C. Hnatovski, V. Shvedov, W. Krolikowski, and A. V. Rode, "Revealing local field structure of focused ultrashort pulses," Phys. Rev. Lett. 106, 123901 (2011). 30. O. Khasanov, T. Smirnova, O. Fedotova, G. Rusetsky, and O. Romanov, "High-intensive femtosecond singular pulses in Kerr dielectrics," Appl. Opt. 51, C198-C207 (2012). 31. V. Jukna, C. Milián, C. Xie, T. Itina, J. Dudley, F. Courvoisier, and A. Couairon, "Filamentation with nonlinear Bessel vortices," Opt. Express 22, 25410-25425 (2014). 32. P. Polynkin, "Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics," Appl. Phys. A 114, 143-149 (2014). 33. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, "Nonlinear Bessel vortex beams for applications," J. Phys. B 48, 094006 (2015). 34. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, "Far-field imaging of non-fluorescent species with subdifruction resolution," Nat. Photonics 7, 449-453 (2013). 35. V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, "A long-range polarization-controlled optical tractor beam," Nat. Photonics 8, 846-850 (2014). 36. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999). 37. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, "Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?" J. Appl. Phys. 118, 233108 (2015). 38. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), pp. 7-13. 39. V. E. Gruzdev, "Photoionization rate in wide band-gap crystals," Phys. Rev. B 75, 205106 (2007). 40. C. Mézel, A. Bourgeade, and L. Hallo, "Surface structuring by ultrashort laser pulses: a review of photoionization models," Phys. Plasmas 17, 113504 (2010). 41. S. L. Chin, "From multiphoton to tunnel ionization," in Advances in Multiphoton Processes and Spectroscopy, S. H. Lin, A. A. Villaeys, and Y. Fujimura, eds. (World Scientific, 2004), Vol. 16, pp. 249-271. 42. S. Juodkazis, A. Vailionis, E. G. Gamaly, L. Rapp, V. Mizeikis, and A. V. Rode, "Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases," MRS Adv. 1, 1149-1155 (2016). 43. E. Yablonovitch, "Self-phase modulation and short-pulse generation from laser-breakdown plasmas," Phys. Rev. A 10, 1888-1895 (1974). 44. W. M. Wood, C. W. Siders, and M. C. Downer, "Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting," Phys. Rev. Lett. 67, 3523-3526 (1991). 45. G. Duchateau and A. Bourgeade, "Influence of the time-dependent pulse spectrum on ionization and laser propagation in nonlinear optical materials," Phys. Rev. A 89, 053837 (2014). 46. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).