Инд. авторы: | Grigoriev Y.N., Meleshko S.V. |
Заглавие: | On group classification of the spatially homogeneous and isotropic boltzmann equation with sources |
Библ. ссылка: | Grigoriev Y.N., Meleshko S.V. On group classification of the spatially homogeneous and isotropic boltzmann equation with sources // Информационные технологии и математическое моделирование в экономике, технике, экологии, образовании, педагогике и торговле. - 2014. - Iss. 7. - P.4-14. |
Внешние системы: | РИНЦ: 23169022; |
Реферат: | rus: В [1] методы классического группового анализа был применен к уравнению, которое было получено из пространственно однородной и изотропного уравнения Больцмана с источниками. Полученное уравнение является еще и нелокальным дифференциальным уравнением в частных производных. Однако это свойство не было принято во внимание в работе, поэтому результат был не совсем верен. В настоящей работе этот недостаток работы [1] исправлен. eng: In [1] the classical group analysis method was applied to the equation which was obtained from the spatially homogeneous and isotropic Boltzmann equation with sources. The derived equation is still a nonlocal partial differential equation. However, this property was not taken into account there. In the present paper this lack of [1] is corrected. |
Ключевые слова: | exact (invariant) solutions; Boltzmann kinetic equation; integro-differential equation; методы группового анализа; точные (инвариантные) решения; кинетическое уравнение Больцмана; group analysis method; |
Издано: | 2014 |
Физ. характеристика: | с.4-14 |
Цитирование: | 1. Nonenmacher T. F. Application of the similarity method to the nonlinear Boltzmann equation // J. of Appl. Mathem. and Physics (ZAMP), 35(9):680-691, 1984. 2. Maxwell J. C. On the dynamical theory of gases // Philosophical Transactions of the Royal Society of London, 157:49-88, 1867. 3. Boltzmann L. Further studies on the thermal equilibrium among gas-molecules // Collected Works, 1:275-370, 1872. 4. Carleman T. Problemes Mathematiques Dans la Theorie Cinetique des Gas. Uppsala, 1957. 5. Nikolskii A. A. The simplest exact solutions of the Boltzmann equation of a rarefied gas motion. Dokl. AS USSR, 151(2):299-301, 1963. 6. Nikolskii A. A. Three dimensional homogeneous expansion-contraction of a rarefied gas with power interaction functions. Dokl. AS USSR, 151(3):522-524, 1963. 7. Nikolskii A. A. Homogeneous motion of displacement of monatomic rarefied gas // Inzhenerny J., 5(4):752-755, 1965. 8. Bobylev A. V. On exact solutions of the Boltzmann equation. Dokl. AS USSR, 225(6):1296-1299, 1975. 9. Krook M., Wu T. T. Formation of Maxwellian tails // Fhys. Rev. Lett., 36(19):1107-1109, 1976. 10. Ernst M. H. Nonlinear model-Boltzmann equations and exact solutions // Phys. Rep., 78:1-171, 1981. 11. Grigoriev Yu. N., Ibragimov N. H., Kovalev V. F., Meleshko S. V. Symmetries of integro-differential equations and their applications in mechanics and plasma physics // Lecture Notes in Physics, Vol. 806. Springer, Berlin / Heidelberg, 2010. 12. Grigoriev Yu. N., Meleshko S. V. Investigation of invariant solutions of the Boltzmann kinetic equation and its models, 1986. Preprint of Institute of Theoretical and Applied Mechanics. 13. Meleshko S. V. Methods for Constructing Exact Solutions of Partial Differential Equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York, 2005. 14. Bobylev A. V. On exact solutions of the Boltzmann equation. Dokl. AS USSR, 225(6):1296-1299, 1975. 15. Grigoriev Yu. N., Meleshko S. V. Group analysis of the integro-differential Boltzman equation. Dokl. AS USSR, 297(2):323-327, 1987. 16. Ovsiannikov L. V. Group analysis of differential equations. Nauka, Moscow, 1978. English translation, Ames, W. F., Ed., published by Academic Press, New York, 1982. |