Инд. авторы: Чуруксаева В.В., Старченко А.В.
Заглавие: Математическая модель и численный метод для расчета течения в русле реки
Библ. ссылка: Чуруксаева В.В., Старченко А.В. Математическая модель и численный метод для расчета течения в русле реки // CITES-2015. - 2015. - Томск: Томский центр научно-технической информации. - С.54-57. - ISBN: 978-5-89702-389-9.
Внешние системы: РИНЦ: 25744219;
Реферат: eng: Depth-averaged hydrodynamic models are widely used to numerically predict flows in natural basins. Modeling flow in rivers and coastal areas is a current problem of an environmental hydrodynamics that includes specific treatment of the free surface. The most general approach is to solve the full 3D equa- tions, but as long as behavior of the free surface is influenced much more by the horizontal velocities then the vertical one and because the size of the spatial domain is very large, solving of depth averaged equation is the main approach in environmental problems. This paper deals with an unsteady depth averaged flow model based on the RANS approach. Averaged turbulent stresses appearing in the model are computed from the depth averaged modification of the widely used model proposed by Launder & Spalding [1]. The staggered structured grid is used to discretize the spatial domain. The convective flux is discretized with MLU-scheme [2] and MUSCL-scheme. Solution of the dis- crete system is obtained with a SIMPLE iterative algorithm based on coupled correction of the depth and veloc- ity fields on each time step. To investigate the applicability of the model some numerical predictions were carried out. Two of them are: the open channel flow around bend and side discharge with contaminant into the moving flow. The results shows that the depth averaged model represents flow patterns near the bend, side inflows, and over complex bathymetry correctly and could be applied for modelling a river flow.
Издано: 2015
Физ. характеристика: с.54-57
Конференция: Название: Международная молодежная школа и конференция по вычислительно-информационным технологиям для наук об окружающей среде
Аббревиатура: CITES-2015
Город: Томск
Страна: Россия
Даты проведения: 2015-06-26 - 2015-06-30
Цитирование: 1. Duc B., Wenka T., and Rodi W. Numerical Modeling of Bed Deformation in Laboratory Channels // Journal of Hydraulic Engineering. Сентябрь 2004. Vol. 9. pp. 894-904. 2. Uijttewaal W.S.J. Hydrodynamics of shallow flows: application to rivers // Journal of Hydraulic Re- search. 2014. Vol. 52. No. 2. pp. 157-172. 3. Chaouat B., Schiestel R. Reynolds stress transport modelling for steady and unsteady channel flows with wall injection // Journal Of Turbulence. 2002. Vol. 3. pp. 1-16. 4. Kang S., Lightbody A., Hill C., and Sotiropoulos F. High-resolution numerical simulation of turbulence in natural waterways // Advances in Water Resources. 2011. Vol. 34. pp. 98-113. 5. Kang S., Sotiropoulos F. Numerical modeling of 3D turbulent free surface flow in natural waterways // Advances in Water Resources. 2012. No. 40. pp. 23-36. 6. Роди [11] В. Модели турбулентности окружающей среды // In: Методы расчета турбулентных течений. Москва: Мир, 1984. pp. 276-278. 7. Chu V.H., Babarutsi S. Confinement and bed-friction effects in shallow turbulent mixing layers // Journal of Hydraulic Engineering. 1988. Vol. 10. No. 114. pp. 1257-1274. 8. Uijttewaal W., Booij R. Effects of shallowness on the development // Physics of Fluids. 2000. Vol. 2. No. 12. pp. 392-402. 9. Noll B. Evaluation of a bounded high-resolution scheme for combustor flow computations // AIAA Journal. 1992. Vol. 30. No. 1. pp. 64-68. 10. Cea L., Puertas J., and Vazquez-Cendon M.E. Depth averaged modelling of turbulent shallow water flow with wet-dry fonts // Archives of computational methods in engineering. September 2007. Vol. 14. No. 3. pp. 303-341.