Цитирование: | 1. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in the Earth's interior. Earth Planet. Sci. Lett. 298, 1-13 (2010).
2. Kerrick, D. C. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411, 293-296 (2001).
3. Brenker, F. E. et al. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 260, 1-9 (2007).
4. Harte, B. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74, 189-215 (2010).
5. Harte, B. & Richardson, S. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gond. Res. 21, 236-245 (2012).
6. Hayman, P., Kopylova, M. & Kaminsky, F. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Mneral. Petrol. 149, 430-445 (2005).
7. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221-224 (2014).
8. Wirth, R., Dobrzhineskaya, L., Harte, B., Schreiber, A. & Green, H. W. High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth Planet. Sci. Lett. 404, 365-375 (2014).
9. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325-394 (1998).
10. Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochem. Cosmochim. Acta 63, 1527-1535 (1999).
11. Biellmann, C., Gillet, P., Guyot, F., Peyronneau, J. & Reynard, B. Experimental evidence for carbonate stability in the Earth's lower mantle. Earth Planet. Sci. Lett. 118, 31-41 (1993).
12. Takafuji, N., Fujino, K., Nagai, T., Seto, Y. & Hamane, D. Decarbonation reaction of magnesite in subducting slabs at the lower mantle. Phys. Chem. Miner. 33, 651-654 (2006).
13. Seto, Y., Hamane, D., Nagai, T. & Fujino, K. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys. Chem. Miner. 35, 223-229 (2008).
14. Fiquet, G. et al. Structural refinements of magnesite at very high pressure. Am. Mineral. 87, 1261-1265 (2002).
15. Isshiki, M. et al. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60-62 (2004).
16. Oganov, A. R., Ono, S., Ma, Y., Glass, C. W. & Garcia, A. Novel high-pressure structures of MgCO3, 176 CaCO3 and CO2 and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 273, 38-47 (2008).
17. Boulard, E. et al. New host for carbon in the deep Earth. Proc. Natl. Acad. Sci. USA 108, 5184-5187 (2011).
18. Boulard, E. et al. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. 117, B02208 (2012).
19. Pickard, C. J. & Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B 91, 104101 (2015).
20. Solopova, N. A., Dubrovinsky, L., Spivak, A. V., Litvin, Y. A. & Dubrovinskaia, N. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys. Chem. Miner. 42, 73-81 (2015).
21. Ishii, T., Kojitani, H. & Akaogi, M. High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upperpart of the lower mantle. Earth Planet. Sci. Lett. 357-358, 31-41 (2012).
22. Ono, S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J. Geophys. Res. 103, 18253-18267 (1998).
23. Ricolleau, A. et al. Phase relations and equation of state of a natural MORB: Imprication for the density profile of subducted oceanic crust in the Earth's lower mantle. J. Geophys. Res. 115, B08202 (2010).
24. Murakami, M., Hirose, K., Ono, S. & Ohishi, Y. Stability of CaCl2-type and PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys. Res. Lett. 30, 1207 (2003).
25. Grocholski, B., Shim, S.-H. & Prakapenka, V. B. Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. J. Geophys. Res.: Solid Earth 118, 4745-4757 (2013).
26. Litasov, K. D., Fei, Y., Ohtani, E., Kuribayashi, T. & Fumakoshi, K. Thermal equation of state of magnesite to 32 GPa and 2073 K. Phys. Earth Planet. Inter. 168, 191-203 (2008).
27. Kakizawa, S., Inoue, T., Suenami, H. & Kikegawa, T. Decarbonation and melting in MgCO3-SiO2 system at high temperature and high pressure. J. Mineral. Petrol. Sci. 110, 179-188 (2015).
28. Litasov, K. D., Goncharov, A. F. & Hemley, R. J. Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle. Earth Planet. Sci. Lett. 309, 318-323 (2011).
29. Iota, V. et al. Six-fold coordinated carbon dioxide VI. Nature Matt. 6, 34-38 (2007).
30. Yoo, C.-S., Sengupta, A. & Kim, M. Carbon dioxide carbonates in the Earth's mantle: implications to the deep carbon cycle. Angew. Chem. 125, 11415-11418 (2011).
31. Komabayashi, T., Omori, S. & Maruyama, S. Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600 C: Applications to hydrous peridotite subducting into the Earth's deep interior. J. Geophys. Res. 109, B03206 (2004).
32. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Earth Planet. Sci. Lett. 183, 73-90 (2010).
33. Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212-218 (2010).
34. Badro, J. et al. Iron partitioning in Earth's mantle: toward a lower mantle discontinuity. Science 300, 789-791 (2003).
35. Speziale, S. et al. Iron spin transition in Earth's mantle. Proc. Natl. Acad. Sci. 102, 17918-17922 (2005).
36. Lin, J.-F. et al. Pressure-induced electronic spin transition of iron in magnesiowustite-(Mg,Fe)O. Phys. Rev. B 73, 113107 (2006).
37. Komabayashi, T. et al. Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth Planet. Sci. Lett. 265, 515-524 (2008).
38. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3. Science 304, 855-858 (2004).
39. Murakami, M., Hirose, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition and mineral chemistry in the pyrolytic lowermost mantle. Geophys. Res. Lett. 32, L03304 (2005).
40. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D" layer. Nature 430, 445-448 (2004).
41. Sakai, T. et al. Fe-Mg partitioning between post-perovskite and ferropericlase in the lowermost mantle. Phys. Chem. Miner. 37, 487-496 (2010).
42. Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 472, 209-212 (2011).
43. Stagno, V. et al. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys. Res. Lett. 38, L19309 (2011).
44. Frost, D. J. & McCammon, C. A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389-420 (2008).
45. Liu, J., Lin, J.-F. & Prakapenka, V. B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep. 5, 7640, doi: 10.1038/srep07640 (2015).
46. Merlini, M. et al. The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am. Mineral. 100, 2001-2004 (2015).
47. Otsuka, K. & Karato, S. Deep penetration of molten iron into the mantle caused by a morphological instability. Nature 492, 243-246 (2012).
48. Fei, Y. et al. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. 104 (2007).
49. Suzuki, I. Thermal expansion of periclase and olivine, and their anharmonic properties. J. Phys. Earth 23, 145-159 (1975).
50. Fei, Y., Mao, H.-K. & Hu, J. P-V-T equation of state of magnesiowüstite (Mg0.6Fe0.4)O. Phys. Chem. Miner. 18, 416-422 (1992).
51. Dewaele, A., Datchi, F., Loubeyre, P. & Mezouar, M. High pressure-high temperature equations of state of neon and diamond. Phys. Rev. B 77, 094106 (2008).
|