Инд. авторы: Bortnikova S.B., Olenchenko V.V., Gaskova O.L., Chernii K.I., Devyatova A.Y., Kucher D.O.
Заглавие: Evidence of trace element emission during the combustion of sulfide-bearing metallurgical slags
Библ. ссылка: Bortnikova S.B., Olenchenko V.V., Gaskova O.L., Chernii K.I., Devyatova A.Y., Kucher D.O. Evidence of trace element emission during the combustion of sulfide-bearing metallurgical slags // Applied Geochemistry. - 2017. - Vol.78. - P.105-115. - ISSN 0883-2927.
Внешние системы: DOI: 10.1016/j.apgeochem.2016.12.016; РИНЦ: 29471730; SCOPUS: 2-s2.0-85007454019; WoS: 000395599500010;
Реферат: eng: The present study shows the results of field and laboratory studies of trace element transfer from waste heaps of metallurgical slags (Kemerovo region, town of Belovo). Temperature anomalies were observed, with high temperatures up to 81.2 °C on the top of the heap. A visual geophysical model of the inner parts of the heap with contrasting resistivity zones was obtained using the electrical resistivity tomography (ERT) method, and quantitative characteristics were derived. Dry and frozen slag zones were characterized by resistivity of 50–500 Ohm·m. The resistivity of wet slag varied from 5 to 10 Ohm·m for slag with low humidity of 1–2 Ohm·m for slag saturated with highly mineralized solutions. The local anomaly of extremely low resistivity (0.3–0.5 Ohm·m) might be associated with a combustion centre or high pore solutions TDS. Basic major elements (Ca, Mg, K, Na, Si, and Al), metals (Cu, Zn, Pb, and Cd) and anionic elements (As, Sb, and V) were determined in gas condensates in situ. The most volatile elements were basic elements: Ca > Cu > Mg > Na > Mn > Fe, Zn. Lower concentration in the condensates was determined for Si > K > As > Sr > Al > V and Pb, Ba, La were also found. The observed mineral paragenetic sequences were primary minerals of barite-polymetallic ores and sphalerite concentrate, high-temperature minerals formed during pyrometallurgical processing and/or permanent combustion of the heap surface, efflorescence minerals formed by atmospheric oxidation accelerated by acid steam condensation. An experimental investigations using stepwise and 500 °C heating of the same samples were performed to compare the elements that were released into the gas phase in situ and off-site. © 2016
Ключевые слова: Condensates; Experimental study; Geophysical and chemical modeling; Metallurgical slags; Aluminum; Atmospheric humidity; Atmospheric temperature; Cadmium; Trace elements; Quantitative characteristics; Pyrometallurgical processing; Metallurgical slags; Experimental study; Experimental investigations; Electrical resistivity tomography; Condensates; Chemical model; Zinc sulfide; Zinc; Waste incineration; Surface chemistry; Steam condensers; Sodium; Slags; Pyrometallurgy; Ores; Minerals; Metals; Metallurgy; Manganese; Magnesium; Lead; Geophysics; Drying; Copper; Combustion; Calcium; Gas condensates; Combustion;
Издано: 2017
Физ. характеристика: с.105-115
Цитирование: 1. Baikov, E.V., Belorodov, V.A., Manshteyn, A.K., Manshteyn, YuA., Panin, G.L., Electrotomography – in the geophysics [J]. Russ. Geophys. J. 6 (2012), 54–63. 2. Baryshev, V.B., Kulipanov, G.N., Skrinsky, A.N., Review of X-ray fluorescent analysis using synchrotron radiation. Nucl. Instru. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 246:1–3 (1986), 739–750. 3. Bortnikova, S.B., Manstein, YuA., Gaskova, O.L., Bessonova, E.P., Ermolaeva, N.I., Drainage water - mine tailings interaction: environmental risk and origin of secondary metal deposit [C]. WRI-13, Guanajuato, Mexico, 16–20 August Barkle, P., Torres-Alvarado, I.S., (eds.) Proceedings of the 13th Internat. Conference on Water-rock Interaction, 2010, 9–14. 4. Bortnikova, S., Yu, Manstein, Saeva, O., Yurkevich, N., Gaskova, O., Bessonova, E., Romanov, R., Ermolaeva, N., Chernuhin, V., Reutsky, A., Acid mine drainage migration of Belovo zinc plant (South Siberia, Russia): multidisciplinary study. Scozzari, A., Mansouri), B., (eds.) [M]. Water Security in the Mediterranean Region. An International Evaluation of Management, Control, and Governance Approaches, 2011, Springer, Netherlands, 191–208. 5. Bortnikova, S.B., Devyatova, A.Yu, Shevko, E.P., Gaskova, O.L., Edelev, A.V., Ogudov, A.S., Trace element emission in gaseous phase from Komsomolsky sulfide tailings (Kemerovo region, Russia) [J]. Chem. Sustain. Dev. 24 (2016), 11–22. 6. Brown, A.S., van der Veen, A.M.H., Arrenius, K., Murugan, A., Culletion, L.P., Ziel, P.R., Li, J., Sampling of gaseous sulfur-containing compounds at low concentrations with a review of best-practice methods for biogas and natural gas application [J]. Trend Anal. Chem. 64 (2015), 42–52. 7. Chen, Y., Zhang, Y.G., Li, Q.H., Zhuo, Y.Q., Chen, C.H., Effects of chlorides on Cd partitioning and speciation in a simulated MSW incinerator [J]. Environ. Sci. 29:5 (2008), 1446–1451. 8. Chevrier, R.M., Le Guern, F., Prélèvement et analyses des condensats de fumerolles sur volcans actifs: Soufri re de la Guadeloupe (1976-1977) et Pouzzoles et Vulcano (Italie) (1978). Bull. Volcanolo. 45:3 (1982), 173–178. 9. Cranney, D.H., Assessing the hazards of blasting in reactive sulfide ores and the application of products to mitigate these hazards [C]. Proceedings of 28th Annual Institute on Mining Health, Safety and Research, 1997, American Institute of Mining and Metallurgy, Salt Lake City, 111–117. 10. Han, J., Xu, M.H., Yao, H., Furuuchi, M., Sakano, T., Kim, H.J., Influence of calcium chloride on the thermal behavior of heavy and alkali metals in sewage sludge incineration [J]. Waste Manag. 28:5 (2008), 833–839. 11. Karaoulis, M., Revil, A., Mao, D., Localization of a coal seam fire using combined self-potential and resistivity data [J]. Int. J. Coal Geol. 128 (2014), 109–118. 12. Krauskopf, K.B., The possible role of volatile metal compounds in ore genesis [J]. Econ. Geol. 59 (1964), 22–45. 13. Li B.R., Uchino K., Inoue M., Tanaka T., 2004. Location of spontaneous combustion in a coal waste pile by self-potential method [C], In: Proceedings of. 5th International Symposium on Mining Science and Technology (ISMST), 249 – 253. 14. Li B., Uchino K., Inoue M., 2005. Fundamental studies for detecting fire source of spontaneous combustion using the self-potential method - In situ measurement in a combusting coal waste pile [C], In: Proceedings of 8th International Mine Ventilation Congress: Brisbane, Australia, 2005(6), 345–348. 15. Lighty, J.S., Veranth, J.M., Sarofim, A.F., Combustion aerosols: factors governing their size and composition and implications to human health [J]. J. Air Waste Manag. Assoc. 50:9 (2000), 1565–1618. 16. Linak, W.P., Wendt, J.O.L., Toxic metal emissions from incineration - mechanisms and control [J]. Prog. Energy Combust. Sci. 19:2 (1993), 145–185. 17. Linak, W.P., Wendt, J.O.L., Trace-metal transformation mechanisms during coal combustion [J]. Fuel Process. Technol. 39:1–3 (1994), 173–198. 18. Liu, J., Falcoz, Q., Gauthier, D., et al. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion [J]. Chemosphere 80:3 (2010), 241–247. 19. Liu, J., Fu, J., Ning, X., Sun, S., Wang, Y., Xie, W., Huang, S., Zhong, S., An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration [J]. J. Environ. Sci. 35 (2015), 43–54. 20. Loke, M.H., Electrical Imaging Surveys for Environmental and Engineering Studies. A Practical Guide to 2-D and 3-D Surveys, RES2DINV Manual. 2009 http://www.abem.se/files/res/2dnotes.pdf (last visit 22.12.2015). 21. Mestrot, A., Uroic, M.K., Plantevin, T., Islam, M.R., Krupp, E.M., et al. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil [J]. Environ. Sci. Technol. 43 (2009), 8270–8275. 22. Mestrot, A., Feldmann, J., Krupp, E., Hossain, M., Roman-Ross, G., et al. Field fluxes and speciation of arsines emanating from soils [J]. Environ. Sci. Technol. 45 (2011), 1798–1804. 23. Misz-Kennan, M., Fabiańska, M., Ciesielczuk, Ju, Thermal transformation of Waste Rocks at the Starzykowiec Coal Waste Dump, Poland//Coal and Peat Fires: a Global Perspective, vol. 3, 2015, Elsevier, Amsterdam, 387–429. 24. Nriagu, J.O., Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere [J]. Nature 279 (1979), 409–411. 25. Nriagu, J.O., Pacyna, J.M., Quantitative assessment of worldwide contamination of air, water and soil by trace metals [J]. Nature 333 (1988), 134–139. 26. Olenchenko, V.V., Kucher, D.O., Bortnikova, S.B., Gas'kova, O.L., Edelev, A.V., Gora, M.P., Vertical and lateral spreading of highly mineralized acid drainage solutions (Ur dump, Salair): electrical resistivity tomography and hydrogeochemical data [J]. Russ. Geol. Geophys. 57 (2016), 611–622. 27. Ostromogilsky, A.H., Kokorin, A.V., Vizhensky, V.A., et al. Monitoring of Background Contamination of the Environment [M]. (Leningrad: Gidrometeoizdat), 1987. 28. Pacyna, J.M., Estimation of the atmospheric emissions of trace-elements from anthropogenic sources in Europe [J]. Atmos. Environ. 18:1 (1984), 41–50. 29. Pacyna, J.M., Atmospheric trace elements from natural and anthropogenic sources. Toxic Metals in the Atmosphere [M], 1986, J. Willey, N.Y. 30. Pacyna, E.G., Pacyna, J.M., Global emission of mercury from anthropogenic sources in 1995 [J]. Water Air Soil Pollut. 137:1–4 (2002), 149–165. 31. Pan, Y., Zhu, R., Banerjee, S.K., Gill, J., Williams, Q., Rock magnetic properties related to thermal treatment of siderite: behavior and interpretation[J]. J. Geophys. Res. 105:B1 (2000), 783–794. 32. Pan, W., Chao, Wu, Li Zi-jun, Yang Y.P., Self-heating tendency evaluation of sulfide ores based on nonlinear multi-parameters fusion [J]. Trans. Nonferrous Metals Soc. China 25:2 (2015), 582–589. 33. Planer-Friedrich, B., Merkel, B., Volatile metals and metalloids in hydrothermal gases. Environ. Sci. Technol. 40 (2006), 3181–3187. 34. Querol, X., Fernandezturiel, J.L., Lopezsoler, A., Trace-elements in coal and their behavior during combustion in a large power-station [J]. Fuel 74:3 (1995), 331–343. 35. Raclavska, H., Corsaro, A., Juchelkova, D., Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires [J]. Fuel Process. Technol. 131 (2015), 330–337. 36. Revil, A., Cathles, L.M., Losh, S., Nunn, J.A., Electrical conductivity in shaly sands with geophysical applications [J]. J. Geophys. Res. 103:B10 (1998), 23,925–23,936. 37. Rosenblum, F., Spira, P., Evaluation of hazard from self-heating of sulfide rock [J]. Cim. Bull. 88:989 (1995), 44–49. 38. Schaumann, G., Bernhard, S., Yu, C., Geophysical Investigation of Wuda Coal Mining Area, Inner Mongolia: Electromagnetics and Magnetics for Coal Fire Detection: UNESCO[M]. ERSEC Ecological Book Series. Spontaneous Coal Seam Fires, vol. 4, 2008, Mitigating a Global Disaster UNESCO Office Beijing, Beijing. 39. Sidenko, N.V., Giere, R., Bortnikova, S.B., Cottard, F., Palchik, N.A., Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia) [J]. J. Geochem. Explor. 74:1–3 (2001), 109–125. 40. Sokol, E., Volkova, N., Lepezin, G., Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia [J]. Eur. J. Mineral. 10 (1998), 1003–1014. 41. Somot, S., Finch, J.A., Possible role of hydrogen sulphide gas in self-heating of pyrrhotite-rich materials[J]. Miner. Eng. 23 (2010), 104–110. 42. Verma, S.K., Masto, R.E., Gautam, S., et al. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel 162 (2015), 138–147. 43. Vriens, B., Ammann, A.A., Hagendorfer, H., et al. Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment. Plos One, 9(7), 2014 No e102906. 44. White, D.E., Waring, G.A., Volcanic emanations. U.S. Geol. Surv. Prof. Pap., 440-K, 1963 27p. 45. White D. E. and Waring G. A., L., Feldmann, J., Meharg, A., Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid [J]. Environ. Sci. Technol. 44 (2010), 382–387. 46. Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, Y., Sheng, C., Status of trace element emission in a coal combustion process: a review[J]. Fuel Process. Technol. 85 (2003), 215–237. 47. Yang, Song-rong, Qiu, Guan-zhou, Hu, Yue-hua, Discussion on sulfides bio-oxidation mechanism [J]. Nonferrous Met. 55:13 (2003), 80–83. 48. Žaček, V., Skála, R., Mineralogy of Burning-coal Waste Piles in Collieries of the Czech Republic [M]. Coal and Peat Fires: a Global Perspective, vol. 3, 2015, Elsevier, Amsterdam, 109–159. 49. Zhang, M., Chen, L., Continuous underway measurements of dimethyl sulfide in seawater by purge and trap gas chromatography coupled with pulsed flame photometric detection[J]. Mar. Chem. 174 (2015), 67–72.