Инд. авторы: Nazarenko S.V., Grebenev V.N.
Заглавие: Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence
Библ. ссылка: Nazarenko S.V., Grebenev V.N. Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence // Journal of Physics A: Mathematical and Theoretical. - 2017. - Vol.50. - Iss. 3. - Art.035501. - ISSN 1751-8113. - EISSN 1751-8121.
Внешние системы: DOI: 10.1088/1751-8121/50/3/035501; РИНЦ: 29472687; SCOPUS: 2-s2.0-85008473079; WoS: 000390821100001;
Реферат: eng: The last stage of evolution toward the stationary Kolmogorov spectrum of hydrodynamic turbulence is studied using the Leith model [1]. This evolution is shown to manifest itself as a reflection wave in the wavenumber space propagating from the largest toward the smallest wavenumbers, and is described by a self-similar solution of a new (third) kind. This stage follows the previously studied stage of an initial explosive propagation of the spectral front from the smallest to the largest wavenumbers reaching arbitrarily large wavenumbers in a finite time, and which was described by a self-similar solution of the second kind [2-4]. Nonstationary solutions corresponding to 'warm cascades' characterised by a thermalised spectrum at large wavenumbers are also obtained. © 2016 IOP Publishing Ltd.
Ключевые слова: self-similar solution; Leith model; large time behavior; reflection wave; stationary Kolmogorov spectrum;
Издано: 2017
Физ. характеристика: 035501
Цитирование: 1. Leith C 1967 Diffusion approximation to inertial energy transfer in isotropic turbulence Phys. Fluids 10 1409 2. Connaughton C and Nazarenko S 2004 Warm cascade and anomalous scaling in a diffusion model of turbulence Phys. Rev. Lett. 92 044501-6 3. Connaughton C and Nazarenko S 2004 A model equation for turbulence (arXiv:physics/0304044) 4. Grebenev V N, Nazarenko S V, Medvedev S B, Schwab I V and Chirkunov Y A 2014 Self-similar solution in Leith model of turbulence: anomalous power law and asymptotic analysis J. Phys. A: Math. Theor. 47 025501 5. Vázquez J L 2007 The Porous Medium Equation. Mathematical Theory (Oxford: Oxford Science Publications) p 624 6. Cichowlas C, Bonaiti P, Debbasch F and Brachet M 2005 Effective dissipation and turbulence in spectrally truncated Euler flows Phys. Rev. Lett. 95 264502 7. L'vov V S, Nazarenko S V and Rudenko O 2007 Bottleneck crossover between classical and quantum superfluid turbulence Phys. Rev. B 76 024520 8. Thalabard S, Nazarenko S V, Galtier S and Medvedev S 2015 Anomalous spectral laws in differential models of turbulence J. Phys. A: Math. Theor. 48 285501 9. Zeldovich Ya B and Raizer Yu P 1966 Physics of Shock-Waves and High-Temperature Phenomena vol 2 (New York: Academic) p 157 10. Galtier S, Nazarenko S V, Newell A C and Pouquet A 2000 A weak turbulence theory for incompressible MHD J. Plasma Phys. 63 447-88 11. Nazarenko S V 2011 Wave Turbulence (Berlin: Springer) 12. Bos W J T, Connaughton C and Godeferd F 2012 Developing homogeneous isotropic turbulence Physica D 241 232-6 13. Brachet M E, Meneguzzi M, Vincent A, Politano H and Sulem P L 1992 Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows Phys. Fluids A 4 2845-54 14. Grebenev V N, Griffin A, Medvedev S B and Nazarenko S V 2016 Steady states in Leith's model of turbulence J. Phys. A: Math. Theor. 49 365501 15. Chirkunov Y A, Nazarenko S V, Medvedev S B and Grebenev V N 2014 Invariant solutions for the nonlinear diffusion model of turbulence J. Phys. A: Math. Theor. 47 185501 16. Lin C C 1948 Note on the law of decay of isotropic turbulence Proc. Natl Acad. Sci. USA 34 540-3 17. Saffman P G 1967 Note on decay of homogeneous turbulence Phys. Fluids 10 1349 18. Meerson B 1989 On the dynamics of strong temperature disturbances in the upper atmosphere of the earth Phys. Fluids A 1 887-91