Инд. авторы: Burov A.E., Lepikhin A.M.
Заглавие: Numerical simulation of carrying capacity of the high-pressure metal composite vessel
Библ. ссылка: Burov A.E., Lepikhin A.M. Numerical simulation of carrying capacity of the high-pressure metal composite vessel // Journal of Machinery Manufacture and Reliability. - 2016. - Vol.45. - Iss. 5. - P.443-450. - ISSN 1052-6188. - EISSN 1934-9394.
Внешние системы: DOI: 10.3103/S1052618816050071; РИНЦ: 27579867; SCOPUS: 2-s2.0-84991736253; WoS: 000399091600009;
Реферат: eng: This paper considers the issue of the numerical simulation of stress–strain state and the destruction of the composite vessel with a metal liner under gradually increasing pressure. The provided solution algorithm is based on the continuum of damage mechanics simulation that relates to the initiation of damage and the accumulation and degradation of the mechanical properties of material. The calculation results are compared with the actual experiment data.
Ключевые слова: Numerical models; Metal composites; Mechanical properties of materials; High pressure; Damage mechanics; Composite vessels; Calculation results; Actual experiments; Degrees of freedom (mechanics); Solution algorithms;
Издано: 2016
Физ. характеристика: с.443-450
Цитирование: 1. Vasiliev, W., Composite Pressure Vessels: Analysis, Design, and Manufacturing, Blacksburg, VA: Bull Ridge Publ., 2009. 2. Komkov, M.A. and Tarasov, V.A., Tekhnologiya namotki kompozitnykh konstruktsii raket i sredstv porazheniya (The Way for Winding the Composite Structures for Rockets and Delivery Vehicles), Moscow: N.E. Bauman State Technical Univ., 2011. 3. Lepikhin, A.M., Burov, A.E., and Moskvichev, V.V., Possibilities of the design estimates of the reliability of a high-pressure metal-composite tank, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 4, p. 344. 4. Bathe, K.-J. and Wilson, E.L., Numerical Methods in Finite Element Analysis, Englewood Cliffs, N.J.: Prentice-Hall, 1976. 5. Matvienko, Yu.G., Modeling and fracture criteria in current problems of strength, aurvivability and machine safety, J. Mach. Manuf. Reliab., 2014, vol. 43, no. 3, p. 242. 6. Rabotnov, Yu.N., On long-term fracture mechanism, in Voprosy prochnosti materialov i konstruktsii (Strength Problems for Materials and Structures), Moscow: USSR Acad. Sci., 1959, pp. 5–7. 7. Kachanov, L.M., On destruction time under creeping conditions, Izv. Akad. Nauk SSSR. Otd. Tekhn. Nauk, 1958, vol. 8, p. 26–31. 8. Stepanova, L.V. and Igonin, S.A., Scattered fracture description: Yu.N. Rabotnov damageability parameter: historical review, fundamental results and state-of-the-art, Vestn. Samarsk. Gos. Univ. Estestvennonauchn. Ser., 2014, no. 3, p. 97–114. 9. Garnich, M.R. and Akula, V.M.K., Review of degradation models for progressive failure analysis of fiber reinforced polymer composites, Appl. Mech. Rev., 2009, vol. 62, p. 010801. 10. Obraztsov, I.F., Vasil’ev, V.V., and Bunakov, V.A., Optimal’noe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov (Optimal Reinforcement for Rotating Shells Made of Composite Materials), Moscow: Mashinostroenie, 1977. 11. Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ (Deformation Fracture Criteria and Strength Calculation for Structure Elements), Moscow: Mashinostroenie, 1981. 12. ANSYS® Academic Research, Release 15.0, ANSYS, Inc. 13. Krikanov, A.A., Thickness distribution of composite pressure vessel near polar aperture, Mekhan. Kompozits. Mater. Konstrukts., 2002, vol. 8, no. 4, pp. 522–532. 14. Wang, R., Jiao, W., Liu, W., and Yang, F., A new method for predicting dome thickness of composite pressure vessels, J. Reinforced Plastics Composites, 2010, vol. 29, no. 22, pp. 3345–3352. 15. Hashin, Z., Failure criteria for unidirectional fiber composites, J. Appl. Mech., 1980, vol. 47, p. 329–334. 16. Matzenmiller, A., Lubliner, J., and Taylor, R., A constitutive model for anisotropic damage in fiber-composites, Mech. Mater., 1995, vol. 20, no. 2, pp. 125–152.