Цитирование: | 1. Alkon, D.L., Changes of membrane currents during learning, J. Exp. Biol., 1984, vol. 112, pp. 95–112.
2. Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., et al., Removing some ‘A’ from AI: embodied cultured networks, embodied artificial intelligence, Lecture Notes Computer Sci., 2004, vol. 3139, pp. 130–145.
3. Bakkum, D.J., Gamblen, P.M., Ben-Ary, B., Chao, Z.C., and Potter, S.M., MEART: the semi-living artist, Front. Neurorobotics, 2007, vol. 5, pp. 1–10.
4. Balaban, P.M. and Bravarenko, N.I., Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity, Eur. J. Neurosci., 2004, vol. 19, pp. 227–233.
5. Cozzi, L., D’Angelo, P., Chiappalone, M., et al., Coding and decoding of information in a bi-directional neural interface, Neurocomputing, 2005, vols. 65–66, pp. 783–792.
6. Demarse, T.B., Wagenaar, D., Blau, A.W., and Potter, S.M., The neurally controlled animat: biological brains acting with simulated bodies, Auton. Robots, 2001, vol. 11, no. 3, pp. 305–310.
7. Hayashi, I., Kiyotoki, M., Kiyohara, A., Tokuda, M., and Kudoh, S.N., Acquisition of logicality in living neuronal networks and its operation to fuzzy bio-robot system, Fuzz-Ieee, 2010, pp. 1–7.
8. Hayashi, I., Kiyotoki, M., Kiyohara, A., Tokuda, M., and Kudoh, S.N., Fuzzy bio-interface: indicating logicality from living neuronal network and learning control of bio-robot, in Intern. Joint. Conf. on Neural Networks, 2011, pp. 2417–2423.
9. Kendel, E., Kletochnye osnovy povedeniya (Cellular Basis of Behavior), Moscow: Mir, 1980.
10. Kostenko, M.A., Isolation of single nerve cells of the brain of the mollusk Limnaea stagnalis for further culturing them in vitro, Tsitologiya, 1972, vol. 14, pp. 1274–1278.
11. Kostyuk, P.G., The problem of reactivity and recent advances in neurophysiology, in Fiziologicheskie nauki–meditsine (Physiological Sciences for Medicine), Leningrad: Nauka, 1983, pp. 5–10.
12. Kotlyar, B.I., Plastichnost’ nervnoi sistemy (The Plasticity of the Nervous System), Moscow: Izd. MGU, 1986.
13. Kudoh, S.N., Taguchi, T., and Hayashi, I., Interaction and intelligence in living neuronal networks connected to moving robot, Fuzz-Ieee, 2006, pp. 1162–1166.
14. Kudoh, S.N., Tokuda, M., Kiyohara, A., Hosokawa, C., Taguchi, T., and Hayashi, I., Vitroid—the robot system with an interface between a living neuronal network and outer world, Int. J. Mechatron. Manufact. Syst., 2011, vol. 4, no. 2, pp. 135–149.
15. Kyriakides, M., McCrohan, C.R., Slade, C.T., et al., The morphology and electrophysiology of the neurons of the paired pedal ganglia of Lymnaea stagnalis (L.), Comp. Biochem. Physiol. Comp. Physiol., 1989, vol. 93, pp. 861–876.
16. Mozzachiodi, R. and Byrne, J.H., More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory, Trends Neurosci., 2010, vol. 33, pp. 17–26.
17. Mussa-Ivaldi, F.A., Alford, S.T., Chiappalone, M., et al., New perspectives on the dialogue between brains and machines, Front. Neurosci., 2010, vol. 4. doi: 10.3389/ neuro.01.008.2010
18. Novellino, A., D’Angelo, P., Cozzi, L., et al., Connecting neurons to a mobile robot: an in vitro bidirectional neural interface, Comput. Intell. Neurosci., 2007, p. 2725. doi: 10.1155/2007/12725
19. Ratushnyak, A.S., Voskrecenskaya, L.V., Pankov, T.M., and Stark, M.B., “Adaptive” trace reactions of hippocampal neurons in tissue culture, Dokl. Akad. Nauk SSSR, 1976, vol. 228, pp. 1479–1481.
20. Shkolnik, A.C., Neurally controlled simulated robot: applying cultured neurons to pandle and approach/ avoidance task in real time, and a framework for studying learning in vitro, S.M. Potter, J. Lu, Dept. of Mathematics and Computer Science, Emory Univ., Atlanta, 2003.
21. Syed, N.I., Bulloch, A.G., and Lukowiak, K., In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea, Science, 1990, vol. 250, pp. 282–285.
22. Tessadori, J., Bisio, M., Martinoia, S., and Chiappalone, M., Modular neuronal assemblies embodied in a closedloop environment: toward future integration of brains and machines, Front. Neural Circuits, 2012, vol. 6, p. 99. doi: 10.3389/fncir.2012.00099. Epub December 12, 2012.
23. Vasilevskii, N.N., Suvorov, N.B., and Trubachev, V.V., Sustainable change in frequency and timing of discharges of cortical neuronal populations in experiments with feedback, Dokl. Akad. Nauk SSSR, 1972, vol. 206, pp. 510–512.
24. Verbnyi, Ya.I. and Mogilevskii, A.Ya., A possible mechanism of plastic rearrangements of neural activity in different regimes of intracellular electrical stimulation according to the methods of system analysis, Zh. Vyssh. Nervn. Deyat. Im. I.P. Pavlova, 1993, vol. 43, pp. 129–138.
25. Warwick, K., Xydas, D., and Nasuto, S.J., Controlling a mobile robot with a biological brain, Def. Sci. J., 2010, vol. 1, pp. 5–14.
|