Инд. авторы: Epov M.I., Terekhov V.I., Nizovtsev M.I., Shurina E.L., Itkina N.B., Ukolov E.S.
Заглавие: Effective thermal conductivity of dispersed materials with contrast inclusions
Библ. ссылка: Epov M.I., Terekhov V.I., Nizovtsev M.I., Shurina E.L., Itkina N.B., Ukolov E.S. Effective thermal conductivity of dispersed materials with contrast inclusions // High Temperature. - 2015. - Vol.53. - Iss. 1. - P.45-50. - ISSN 0018-151X. - EISSN 1608-3156.
Внешние системы: DOI: 10.1134/S0018151X15010046; РИНЦ: 23718119;
Реферат: eng: The results of numerical and experimental studies of the effective thermal conductivity of dispersed materials with contrast inclusions are presented. The numerical analysis was based on using the multiscale finite element method making it possible to calculate heat transport in media with ordered and chaotic location of the inclusions. The influence of the concentration of inclusions and the manner of their packing on the value of the effective coefficient of thermal conductivity was analyzed. The coefficient of thermal conductivity was studied experimentally for two media, gypsum and plexiglass with inclusions of steel balls (d =3 mm) with different packing. The comparison of the results of measurements and numerical simulation makes it possible to verify the elaborated program complex and determine the boundaries of application of the available analytical dependences.
Издано: 2015
Физ. характеристика: с.45-50
Цитирование: 1. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Oxford University Press, 1904. 2. Rayleigh, L., Philos. Mag., 1892, vol. 34, p. 481. 3. Bruggeman, D.A.G., Ann. Phys. (New York), 1935, vol. 416, no. 7, p. 636. 4. Meredith, R.E. and Tobias, C.W., J. Electrochem. Soc., 1961, vol. 103, p. 286. 5. Fricke, H., Phys. Rev., 1924, vol. 24, p. 575. 6. Chudnovskii, A.F., Teplofizicheskie kharakteristiki dispersnykh materialov (Thermal and Physical Characteristics of Dispersed Materials), Moscow: Fizmatgiz, 1962. 7. Xu, Y., Kinugawa, J., and Yagi, K., Mater. Trans., 2003, vol. 44, no. 4, p. 629. 8. Yamada, E. and Ota, T., Wдrme_ Stoffьbertragung, 1980, vol. 13, p. 27. 9. Dul'nev, N.G., Inzh.-Fiz. Zh., 1970, vol. 19, p. 562. 10. Progelhot, R.G., Throne, L., and Ructsch, R.R., Polym. Eng. Sci., 1976, vol. 16, no. 9, p. 615. 11. Formalev, V.F. and Kolesnik, S.A., High Temp., 2013, vol. 51, no. 6, p. 795. 12. Zarubin, V.S. and Kuvyrkin, G.N., High Temp., 2013, vol. 51, no. 4, p. 519. 13. Zhikov, V.V., Kozlov, S.M., and Oleinik, O.A., Usrednenie differentsial'nykh operatorov (Averaging of Differential Operators), Moscow: Fizmatlit, 1993, p. 464. 14. Bensoussan, A., Lions, J._L., and Papanicolau, G., Asymptotic Analysis for Periodic Structures, Providence, Rhode Island, United States: American Mathematical Society, 2011. 15. Efendiev, Y.R. and Hou, T.Y., Multiscale, Finite, and Element Methods: Theory and Application, New York: Springer_Verlag, 2009. 16. Weinan, E. and Engquist, B., Not. Am. Math. Soc., 2003, vol. 50, no. 9, p. 1062. 17. Weinan, E., Engquist, B., Li, X., Ren, W., and VandenEijnden, E., Commun. Comput. Phys., 2007, vol. 2, no. 3, p. 367 18. Epov, M.I., Shurina, E.P., and Artem'ev, M.K., Dokl. Earth Sci., 2012, vol. 442, part 1, p. 97. 19. Epov, M.I., Shurina, E.P., and Artem'ev, M.K., Geofiz. Zh., Nats. Akad. Nauk Ukr., 2012, vol. 34, no. 4, p. 16.