Цитирование: | 1. D. Arnold, R. Falk, R. Winther, Differential complexes and stability of finite element methods I. The de Rham complex, in: D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, M. Shashkov (Eds.), Compatible Spatial Discretizations, in: The IMA Volumes in Mathematics and Its Applications, vol. 142, Springer, New York, 2006, pp. 23-46.
2. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc. 47 (2010) 281-354.
3. R. Beck, R. Hiptmair, Multilevel solution of the time-harmonic Maxwell's equations based on edge elements, Int. J. Numer. Methods Eng. 45 (1999) 901-920.
4. A. Bossavit, I. Mayergoyz, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Electromagnetism, Elsevier Science, 1998.
5. B. Donderici, F.L. Teixeira, Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media, IEEE Trans. Microw. Theory Tech. 56 (2008) 113-120.
6. B. He, F.L. Teixeira, Differential forms, Galerkin duality, and sparse inverse approximations in finite element solutions of Maxwell equations, IEEE Trans. Antennas Propag. 55 (2007) 1359-1368.
7. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. (2002) 237-339.
8. R. Hiptmair, From E to edge elements, The Academician 3 (2003) 23-31.
9. H.O. Lee, F.L. Teixeira, Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered Earth media, IEEE Trans. Geosci. Remote Sens. 45 (2007) 383-388.
10. Z. Ma, C. Croskey, L. Hale, The electrodynamic responses of the atmosphere and ionosphere to the lightning discharge, J. Atmos. Sol.-Terr. Phys. 60 (1998) 845-861.
11. O. Nechaev, E. Shurina, M. Botchev, Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation, Comput. Math. Appl. 55 (2008) 2346-2362.
12. J.C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341.
13. J.C. Nedelec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986) 57-81.
14. N. Orlovskaya, E. Shurina, M. Epov, The modeling electromagnetic fields at the medium with anisotropic conductivity, Comput. Technol. 11 (2006) 99-116.
15. N. Orlovskaya, E. Shurina, M. Epov, Tensor coefficient of the conductivity in geophysical application, Comput. Technol. 1 (2008) 1-15.
16. Z. Ren, N. Ida, High order differential form-based elements for the computation of electromagnetic fields, IEEE Trans. Magn. 36 (2000) 1472-1478.
17. T. Rylander, J.M. Jin, Perfectly matched layer for the time domain finite element method, J. Comput. Phys. 200 (2004) 238-250, http://dx.doi.org/10.1016/j.jcp.2004.03.016.
18. E. Shurina, N. Shtabel, Analysis of vector finite element approximations of Maxwell's equations in anisotropic media, Comput. Technol. 18 (2013) 91-104 (in Russian).
19. S. Wang, R. Lee, F. Teixeira, Anisotropic-medium PML for vector FETD with modified basis functions, IEEE Trans. Antennas Propag. 54 (2006) 20-27, http://dx.doi.org/10.1109/TAP.2005.861523.
20. T. Wang, S. Fang, 3-d electromagnetic anisotropy modeling using finite differences, Geophysics 66 (2001) 1386-1398.
21. J.P. Webb, Edge elements and what they can do for you, IEEE Trans. Magn. 29 (1993) 1460-1465.
22. C. Yin, H.M. Maurer, Electromagnetic induction in a layered earth with arbitrary anisotropy, Geophysics 66 (2001) 1405-1416.
23. C. Yin, P. Weidelt, Geoelectrical fields in a layered earth with arbitrary anisotropy, Geophysics 64 (1999) 426-434.
24. L. Zhong, S. Shu, G. Wittum, J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell's equation, J. Comput. Math. 27 (2009) 563-572.
|