Инд. авторы: | Проскура А.Л., Малахин И.А., Турнаев И.И., Суслов В.В., Запара Т.А., Ратушняк А.С. |
Заглавие: | Межмолекулярные взаимодействия в функциональных системах нейрона |
Библ. ссылка: | Проскура А.Л., Малахин И.А., Турнаев И.И., Суслов В.В., Запара Т.А., Ратушняк А.С. Межмолекулярные взаимодействия в функциональных системах нейрона // Вавиловский журнал генетики и селекции. - 2013. - Т.17. - № 4-1. - С.620-628. - ISSN 2500-0462. - EISSN 2500-3259. |
Внешние системы: | РИНЦ: 21150791; |
Реферат: | rus: Синаптические нейрональные контакты являются одним из основных элементов, обеспечивающих пластичность нервной системы, а изменение эффективности синаптической передачи ответственно за такие реакции, как восприятие, проведение возбуждения, обучение и память. Дендритные шипики представляют постсинаптическую часть возбуждающих синапсов высших отделов мозга млекопитающих. Белок-белковые сети микродоменов шипиков формируют функциональную систему синапсов нейрона. Проведена реконструкция концептуальной модели межмолекулярных взаимодействий, обеспечивающих изменение эффективности синаптической передачи вслед за активацией синапса, интеграцию возбуждения в локальной дендритной сети нейрона и длительное поддержание нового уровня нейротрансмиссии. eng: Neuronal synaptic contacts are among the basic elements that determine the plasticity of the nervous system. Changes in the efficiency of synaptic transmission mediate sensation, conduction of excitation, learning, and memory. Dendritic spines are the postsynaptic part of excitatory synapses in higher divisions of mammalian brains. Protein–protein networks of spine microdomains form the functional system of neuronal synapses. Reconstruction of the conceptual model of molecular interactions has been performed. The model represents activity-dependent changes of the synaptic transmission efficiency, integration of excitation in the local dendritic network of a neuron, and prolonged maintenance of the new level of neurotransmission. |
Ключевые слова: | долговременная потенциация; синаптическая пластичность; glutamate receptors; long-term potentiation; synaptic plasticity; глутаматные рецепторы; |
Издано: | 2013 |
Физ. характеристика: | с.620-628 |
Цитирование: | 1. Малахин И.А., Проскура А.Л., Запара Т.А., Ратушняк А.С. Влияние сборки транспортных везикул на процессы сохранения эффективности синаптической передачи // Вестн. НГУ 2012. Т. 10. № 4. С. 14-20. 2. Сергеев П.В., Шимановский Н.Л., Петров В.И. Рецепторы физиологически активных веществ: Монография. Волгоград: Семь ветров, 1999. 640 с. 3. Ananko E.A., Podkolodny N.L., Stepanenko I.L. et al. GeneNet in 2005 // Nucl. Acids Res. 2005. V. 33. P. 425-427. 4. Ashby M.C., De La Rue S.A., Ralph G.S. et al. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs AMPARs // J. Neurosci. 2004. V. 24. No. 22. P. 5172-5176. 5. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus // Nature. 1993. V. 361. No. 6407. P. 31-39. 6. Chen X., Winters C., Azzam R. et al. Organization of the core structure of the postsynaptic density // Proc. Natl Acad. Sci. USA. 2008. V. 105. No. 11. P. 4453-4458. 7. Collins M.O., Husi H., Yu L., Brandon J.M. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome // J. Neurochem. 2006. V. 97. P. 16-23. 8. Correia S.S., Bassani S., Brown T.C. et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation // Nat. Neurosci. 2008. V. 11. No. 4. P. 457-466. 9. Eyster K.M. The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist // Adv. Physiol. Educ. 2007. V. 31. No. 1. P. 5-16. 10. Genoux D., Haditsch U., Knobloch M. et al. Protein phosphatase 1 is a molecular constraint on learning and memory // Nature. 2002. V. 418. No. 6901. P. 970-975. 11. Gerges N.Z., Tran I.C., Backos D.S. et al. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors // J. Neurosci. 2004. V. 24. No. 20. P. 4758-66. 12. Hanse E., Gustafsson B. Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus // J. Neurosci. 1992. V. 12. No. 8. P. 3226-3240. 13. Harvey C.D., Yasuda R., Zhong H., Svoboda K. The spread of Ras activity triggered by activation of a single dendritic spine // Science. 2008. V. 321. No. 5885. P 136-140. 14. Hawley D.F., Morch K., Christie B.R., Leasure J.L. Differential response of hippocampal subregions to stress and learning // PLoS One. 2012 V. 7. No. 12. P. E53126. 15. Honkura N., Matsuzaki M., Noguchi J. et al. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines // Neuron. 2008. V. 57. No. 5. P. 719-729. 16. Hotulainen P., Hoogenraad C.C. Actin in dendritic spines: connecting dynamics to function // J. Cell. Biol. 2010. V. 189. P. 619-629. 17. Jouvenceau A., Billard J.M., Haditsch U. et al. Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area // Eur. J. Neurosci. 2003. V. 18. No. 5. P. 1279-1285. 18. Kasai H., Fukuda M., Watanabe S. et al. Structural dynamics of dendritic spines in memory and cognition // Trends. Neurosci. 2010. V. 33. No. 3. P. 121-129. 19. Kennedy M.J., Davison I.G., Robinson C.G., Ehlers M.D. Syn-taxin-4 defines a domain for activity-dependent exocytosis in dendritic spines // Cell. 2010. V. 141. 3. P. 524-535. 20. Kim M., Park A.J., Havekes R. et al. Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-termpotentiation // PloS. Comput. Biol. 2011. V. 7. No. 6. P. E1002084. 21. Kjelstrup K.B., Solstad T., Brun V.H. et al. Finite scale of spatial representation in the hippocampus // Science. 2008. V. 321. No. 5885. P. 140-143. 22. Li H., Rao A., Hogan P.G. Interaction of calcineurin with substrates and targeting proteins // Trends. Cell. Biol. 2011. V. 21. No. 2. P. 91-103. 23. Liu S.H., Cheng H.H., Huang S.Y. et al. Studying the protein organization of the postsynaptic density by a novel solid phase- and chemical cross-linking-based technology // Mol. Cell. Proteomics. 2006. V. 5. No. 6. P. 1019-1032. 24. Lu W., Ziff E.B. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking // Neuron. 2005. V. 47. No. 3. P. 407-421. 25. Martin K.C., Zukin R.S. RNA trafficking and local protein synthesis in dendrites: an overview // J. Neurosci. 2006. V. 26. No. 27. P. 7131-7134. 26. Messaoudi E., Kanhema T., Soule J. et al. Sustained Arc/ Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo // J. Neurosci. 2007. V. 27. No. 39. P. 10445-10455. 27. Mons N., Guillou J.L., Decorte L., Jaffard R. Spatial learning induces differential changes in calcium/calmodulinstimulated (ACI) and calcium-insensitive (ACII) adenylyl cyclases in the mouse hippocampus // Neurobiol. Learn. Mem. 2003. 79. No. 3. P. 226-235. 28. Murakoshi H., Wang H., Yasuda R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines // Nature. 2011. V. 472. No. 7341. P. 100-104. 29. Nagasawa M., Sakimura K., Mori K.J. et al. Gene structure and chromosomal localization of the mouse NMDA receptor channel subunits // Brain Res. Mol. Brain. Res. 1996. V. 36. No. 1. P. 1-11. 30. Newpher T.M., Ehlers M.D. Glutamate receptor dynamics in dendritic microdomains // Neuron. 2008. V. 58. No. 4. P. 472-497. 31. Nikandrova Y.A., Jiao Y, BaucumA.J. et al. Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity // J. Biol. Chem. 2010. V. 285. No. 2. P. 923-934. 32. Nowak L., Bregestovski P., Ascher P. et al. Magnesium gates glutamate-activated channels in mouse central neurones // Nature. 1984. V. 307. No. 5950. P. 462-465. 33. O'Connor D.H., Wittenberg G.M., Wang S.S-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 9679-9684. 34. Okabe S. Molecular anatomy of the postsynaptic density // Mol. Cell. Neurosci. 2007. V. 34. P. 503-518. 35. Opazo P., Choquet D. A three-step model for the synaptic recruitment of AMPA receptors // Mol. Cell. Neurosci. 2011. V. 46. No. 1. P. 1-8. 36. Palmer C.L., Cotton L., Henley J.M. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors// Pharmacol. Rev. 2005. V. 57. No. 2. P. 253-277. 37. Passafaro M., Piech V., Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons // Nat. Neurosci. 2001. V. 4. No. 9. P. 917-926. 38. Patterson M.A., Szatmari E.M., Yasuda R. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation // Proc. Natl Acad. Sci. USA. 2010. V. 107. No. 36. P. 15951-15956. 39. Peebles C.L., Yoo J., Thwin M.T. et al. Arc regulates spine morphology and maintains network stability in vivo // Proc. Natl Acad. Sci. USA. 2010. V. 107. No. 42. P. 18173-18178. 40. Petersen C.C., Malenka R.C., Nicoll R.A., Hopfield J.J. All-or-none potentiation at CA3-CA1 synapses // Proc. Natl Acad. Sci. USA. 1998. V. 95. No. 8. P. 4732-4737. 41. Petrini E.M., Lu J., Cognet L. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation // Neuron. 2009. V. 63. No. 1. P. 92-105. 42. Plant K., Pelkey K.A., Bortolotto Z.A. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation // Nat. Neurosci. 2006. V. 9. No. 5. P. 602-604. 43. Plath N., Ohana O., Dammermann B. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories // Neuron. 2006. V. 52. No. 3. P. 437-444. 44. Raghuram V., Sharma Y, Kreutz M.R. Ca2+ sensor proteins in dendritic spines: a race for Ca2+ // Front. Mol. Neurosci. 2012. V. 5. P. 61. 45. Sellers J.R. Myosins: a diverse superfamily // Biochim. Biophys. Acta. 2000. V. 1496. P. 3-22. 46. Shen L., Liang F., Walensky L.D., Huganir R.L. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association // J. Neurosci. 2000. V. 20. No. 21. P. 7932-7940. 47. Sheng M., Hoogenraad C.C. The postsynaptic architecture of excitatory synapses: a more quantitative view // Annu. Rev. Biochem. 2007. V. 76. P. 823-847. 48. Shepherd J.D., Huganir R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking // Annu. Rev. Cell. Dev. Biol. 2007. V. 23. P. 613-643. 49. Shi S.H., Hayashi Y., Petralia R.S. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation // Science. 1999. V. 284. No. 5421. P. 1811-18116. 50. Steiner P., Alberi S., Kulangara K. et al. Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2 // EMBO J. 2005. V. 24. No. 16. P. 2873-2884. 51. Steward O., Schuman E.M. Protein synthesis at synaptic sites on dendrites // Annu. Rev. Neurosci. 2001. V. 24. P. 299-325. 52. Szirmai I., Buzsaki G., Kamondi A. 120 years of hippocampal Schaffer collaterals // Hippocampus. 2012. V. 22. No. 7. P. 1508-1516. 53. Tardin C., Cognet L., Bats C. et al. Direct imaging of lateral movements of AMPA receptors inside synapses // EMBO J. 2003. V. 22. No. 18. P 4656-4665. 54. Tsien J.Z., Huerta P.T., Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory // Cell. 1996. V. 87. No. 7. P. 1327-1338. 55. Tsunoda S., Sierralta J., Sun Y. et al. A multivalent PDZ-domain protein assembles signaling complexes in a G-protein-coupled cascade // Nature. 1997. V. 388. P 243-249. 56. Verpelli C., Piccoli G., Zanchi A. et al. Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis // J. Neurosci. 2010. V. 30. No. 17. P. 5830-5842. 57. Wegner A.M., Nebhan C.A., Hu L. et al. N-Wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses // J. Biol. Chem. 2008. V. 283. P. 15912-15920. |