Инд. авторы: Rechkunov S.N., Prinz A.V., Seleznev V.A., Golod S.V., Soots R.A., Ivanov A.I., Prinz V.Y., Ratushnyak A.S.
Заглавие: Neurointerfaces: review and development
Библ. ссылка: Rechkunov S.N., Prinz A.V., Seleznev V.A., Golod S.V., Soots R.A., Ivanov A.I., Prinz V.Y., Ratushnyak A.S. Neurointerfaces: review and development // Russian Journal of Genetics: Applied Research. - 2015. - Vol.5. - Iss. 6. - P.552-561. - ISSN 2079-0597. - EISSN 2079-0600.
Внешние системы: DOI: 10.1134/S2079059715060143; РИНЦ: 26924040;
Реферат: eng: Electrical activity seems to be the key issue for disclosing information processing mechanisms in neuronal networks; however, the related phenomena such as long-term memory, learning behavior and synaptic plasticity have not been adequately understood yet on cellular level. A great challenge in the fundamental research and practical implementation of those phenomena is to build up multi-electrode array (MEA) devices for simultaneous neuronal recordings and stimulation. We outline the state-of-the-art MEA designs, development trends, and benefits and shortcomings of the MEA concept. As a rule, the general task in neurointerface designing is to achieve biocompatible, low-invasive interface performance and the spatio-temporal resolution. In this paper, we propose and describe two innovative neurointerface designs. One of these designs is introduced as a conceptual device based on a dense array of vertically standing semiconductor microtubes, which can be implemented in next-generation in vivo neuronal interfaces. Another design is a pilot in vitro MEA device included 60 planar patch-clamp electrode sites array. Here, we report results of measurements performed with the help of patch-clamp electrodes, each of the electrodes is a kind of a 2 μm diameter pipette that can be used for making contacts to the cell membrane. An advantageous feature of the method consists in that the treated cells have no immediate contact with the metal as they contact with the microchannel conducting liquid, or ionic conductor; this approach ensures more adequate measurements and, simultaneously, it improves the cell survivability during experiments.
Ключевые слова: semiconductor nanotubes; patch-clamp electrodes; neurointerface;
Издано: 2015
Физ. характеристика: с.552-561
Цитирование: 1. Aregueta-Robles, U.A., Woolley, A.J., Poole-Warren, L.A., et al., Organic electrode coatings for next-generation neural interfaces, Front. Neuroeng., 2014, vol. 7, article 15(18P). doi: 10.3389/fneng.2014.00015 2. Aryasomayajula, A., Perike, S., Henselc, R., Posseckardt, J., Gerlach, G., and Funk, H.W., A novel patch micro electrode array for sensing ionic membrane currents, in Proc. Eurosensors XXV. September 4–7, 2011, Athens, Greece. 3. Baranauskas, G., Maggiolini, E., Castagnola, E., et al., Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signalto-noise ratio, J. Neural Eng., 2011, vol. 8, p. 066013. 4. Bareket-Keren, L. and Hahein, Y., Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, Front. Neural Circuits, 2013, vol. 6. 5. Bruggemann, A., George, M., Klau, M., Beckler, M., Steindl, J., Behrends, J.C., and Fertig, N., High quality ion channel analysis on a chip with the NPC technology, Assay Drug Dev. Technol., 2003, vol. 1, no. 5, pp. 665–673. 6. Brunetti, V., Maiorano, G., Rizello, L., et al., Neurons sense nanoscale roughness with nanometer sensitivity, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 14, pp. 6264–6269. 7. Buzsaki, G., Large-scale recording of neuronal ensembles, Nat. Neurosci., 2004, vol. 7, pp. 446–451. 8. Buzsaki, G., Anastassiou, C.A., and Koch, C., The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci., 2012, vol. 13, pp. 407–420. 9. Campbell, P.K., Jones, K.E., Huber, R.J., et al., A siliconbased, three-dimensional neural interface: manufacturing processes for an intracortical electrode array, IEEE Trans. Biomed. Eng., 1991, vol. 38, pp. 758–768. 10. Carandini, M., From circuits to behavior: a bridge too far?, Nat. Neurosci., 2012, vol. 15, no. 4, pp. 507–509. 11. Chandrakasan, A.P., Verma, N., and Daly, D.C., Ultralowpower electronics for biomedical applications, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 247–274. 12. Chang, C.-W. and Chiou, J.-C., Development of a three dimensional neural sensing device by a stacking method, Sensors, 2010, vol. 10, pp. 4238–4252. 13. Cogan, S.F., Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 275–309. 14. Cullen, D.K., Wolf, J.A., Vernekar, V.N., et al., Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (part 1), Crit. Rev. Biomed. Eng., 2011, vol. 39, pp. 201–240. 15. Dale, T.J., Townsend, C., Hollands, E.C., and Trezise, D.J., Population patch clamp electrophysiology: a breakthrough technology for ion channel screening, Mol. Biosyst., 2007, vol. 3, pp. 714–722. 16. Du, J.G., Roukes, M.L., and Masmanidis, S.C., Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates, J. Micromech. Microeng., 2009, vol. 19, p. 075008. 17. Du, J.G., Blanche, T.J., Harrison, R.R., et al., Multiplexed, high density electrophysiology with nanofabricated neural probes, PLoS ONE, 2011, vol. 6, no. 10, p. e26204. 18. Fertig, N., Tilke, A., Blick, R.H., Kotthaus, J.P., Behrend, J.C., and ten Bruggencate, G., Stable integration of isolated cell membrane patches in a nanomachined aperture, Appl. Phys. Lett., 2000, vol. 77, pp. 1218–1220. 19. Fertig, N., Blick, R.H., and Behrends, J.C., Whole cell patch clamp recording performed on a planar glass chip, Biophys. J., 2002, vol. 82, pp. 3056–3062. 20. Grill, W.M., Norman, S.E., and Bellamkonda, R.V., Implanted neural interfaces: biochallenges and engineered solutions, Annu. Rev. Biomed. Eng., 2009, vol. 11, p. 124. 21. Guthrie, H., Livingston, F.S., Gubler, U., and Garippa, R., A place for high-throughput electrophysiology in cardiac safety: screening hERG cell lines and novel compounds with the IonWorks HT system, J. Biomol. Screen., 2006, vol. 10, no. 8, pp. 832–840. 22. Henze, D.A., Borhegyi, Z., Csicvari, J., et al., Intracellular features predicted by extracellular recordings in the hippocampus in vivo, J. Neurophysiol., 2000, vol. 84, pp. 390–400. 23. Herwik, S., Kisban, S., Aarts, A.A.A., et al., Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording, J. Micromech. Microeng., 2009, vol. 19, p. 074008. 24. Hubel, D.H., Tungsten microelectrode for recording from single units, Science, 1957, vol. 125, pp. 549–550. 25. John, V.H., Dale, T.J., Hollands, E.C., Chen, M.X., Partington, L., Downie, D.L., Meadows, H.J., and Trezise, D.J., Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels, J. Biomol. Screen., 2007, vol. 12, p. 50. doi: 10.1177/ 1087057106294920 26. Kiss, L., Bennett, P.B., Uebele, V.N., Koblan, K.S., Kane, S.A., Neagle, B., and Schroeder, K., High throughput ion-channel pharmacology: planar-arraybased voltage clamp, Assay Drug Dev. Technol., 2003, vol. 1, pp. 127–135. 27. Klemic, K.G., Klemic, J.F., Reed, M.A., and Sigworth, F., Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosens. Bioelectron., 2002, vol. 17, pp. 597–604. 28. Kopylov, A.V. and Prinz, V.Ya., Graphene-semiconductor tubular needles for operation on living cells, Vestn. NGU, Ser. Fiz., 2010, vol. 5, no. 1, pp. 91–96. 29. Lai, H.-Y., Liao, L.-D., Lin, C.-T., et al., Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording, J. Neural Eng., 2012, vol. 9, p. 036001. 30. Lebedev, M.A. and Nicolelis, A.L., Brain-machine interfaces: past, present and future, Trends Neurosci., 2006, vol. 29, no. 9, pp. 536–546. 31. Lee, C.K. and Huguenard, J.R., Martinotti cells: community organizers, Neuron, 2011, vol. 69, no. 6, pp. 1042–1045. 32. Lehnert, T., Gijs, M.A.M., Netzer, R., and Bischoff, U., Realization of hollow sio2 micronozzle for electrical measurements on living cells, Appl. Phys. Lett., 2002, vol. 81, pp. 5063–5065. 33. Levy, R.B. and Reyes, A.D., Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex, J. Neurosci., 2012, vol. 32, no. 16, pp. 5609–5619. 34. Li, X., Klemic, K.G., Reed, M.A., and Sigworth, F.J., Microfluidic system for planar patch clamp electrode arrays, Nano Lett., 2006, vol. 6, no. 4, pp. 815–819. 35. Ludwig, K.A., Langhals, N.B., Joseph, M.D., et al., Poly(3,4-ethylenedioxythiophene) (pedot) polymer coatings facilitate smaller neural recording electrodes, J. Neural Eng., 2011, vol. 8, p. 014001. 36. Maccione, A., Gandolfo, M., Tedesco, M., et al., Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects, Front. Neuroeng., 2010, vol. 3, article 4, pp. 1–12. doi: 10.3389/fneng.2010.00004 37. Martina, M., Luk, C., Py, C., Martinez, D., Comas, T., Monette, R., Denhoff, M., Syed, N., and Mealing, G.A., Recordings of cultured neurons and synaptic activity using patch-clamp chips, J. Neural Eng., 2011, vol. 8, p. 034002. 38. Martinez, D., Py, C., Denhoff, M.W., Martinac, M., Monette, R., Comas, T., Luk, C., Syed, N., and Mealing, G., High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip, Biomed. Microdevices, 2010, vol. 12, pp. 977–985. doi 10.1007/s10544010-9452-z 39. McCarthy, P.T., Rao, M.P., and Otto, K.J., Simultaneous recording of rat auditory cortex and thalamus via a titanium-based, microfabricated, microelectrode device, J. Neural. Eng., 2011, vol. 8, p. 046007. 40. Najafi, K., Wise, K.D., and Mochizuki, T., A high-yield IC-compatible multichannel recording array, IEEE Trans. Electron. Devices, 1985, vol. 32, pp. 1206–1211. 41. Napoli, A., Xie, J., and Obeid, I., Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis, BMC Neurosci., 2014, vol. 15, no. 1, pp. 17–27. 42. Nicolelis, M.A.L., Dimitrov, D., Carmena, J.M., et al., Cronic, multisite, multielectrode recordings in macaque monkeys, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 11041–11046. 43. Oberlaender, M., Boudewijns, Z., Kleelec, T., et al., Threedimensional axon morphologies of individual layer 5neuron indicate cell type-specific intracortical pathways for whisker motion and touch, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 10, pp. 4188–4193. 44. Pantoja, R., Nagarah, J.M., Starace, D.M., Melosh, N.A., Blunck, R., Bezanilla, F., and Heath, J.R., Silicon chip-based patch-clamp electrodes integrated with pdms microfluidics, Biosens. Bioelectron, 2004, vol. 20, pp. 509–517. 45. Prinz, A.V., Method for fabrication of array of extended semiconductor microtubes, Nano-Mikrosist. Tekhn., 2013, no. 10, pp. 5–7. 46. Prinz, A.V. and Prinz, V.Ya., Application of semiconductor microand nanotubes in biology, Surf. Sci., 2003, vol. 532-535, pp. 911–915. 47. Prinz, V.Ya., Seleznev, V.A., and Gutakovsky, A.K., Selfformed InGaAs/GaAs nanotubes: concept, fabrication, properties, in Proc. of the 24th Intern. Conf. on the Physics of Semiconductors, Gershoni, D., Ed., World Scientific, Singapore, 1998. 48. Prinz, V.Ya., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazenskii, V.V., Putyato, M.A., and Gavrilova, T.A., Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E, 2000, vol. 6, nos 1/4, pp. 828–831. 49. Prinz, A.V., Prinz, V.Ya., and Seleznev, V.A., Semiconductor microand nanoneedles for microinjections andink-jet printing, Microelectron. Eng., 2003a, vols. 67/68, pp. 782–788. 50. Prinz, V.Ya., Seleznev, V.A., and Chekhovski, A.V., Selfforming of semiconductor microand nanotubes, Mikrosist. Tekhn., 2003b, no. 6, pp. 29–34. 51. Prinz, V.Ya., Golod, S.V., and Prinz, A.V., Integrated hollow needle and method for its fabrication, RF Patent No. 2341299, 2008. 52. Py, C., Denhoff, M.W., Martinac, M., Monette, R., Comas, T., Ahuja, T., Martinez, D., Wingar, S., Caballero, J., Laframboisea, S., Mielkec, J., Bogdanov, A., Luk, C., Syed, N., and Mealing, G., A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons, Biotechnol. Bioeng., 2010, vol. 107, no. 4, pp. 593–600. 53. Py, C., Denhoff, M.W., Sabourin, N., Weber, J., Shiu, M., and Zhao, P., Priming and testing silicon patch-clamp neurochips, New Biotechnol., 2014, vol. 31, no. 5, pp. 430–435. 54. Rutten, W.L.C., Selective electrical interfaces with the nervous system, Annu. Rev. Biomed. Eng., 2002, vol. 4, pp. 407–452. 55. Ruz, I.D. and Schulz, S.R., Localizing and classifying neurons from high density MEA recordings, J. Neurosci. Methods, 2014, vol. 233, pp. 115–128. 56. Sarpeshkar, R., Wattanapanitch, W., Arfin, S.K., et al., Low-power circuits for brain-machine interfaces, IEEE Trans. Biomed. Circuits Syst., 2008, vol. 2, no. 3, pp. 173–183. 57. Schwartz, A.B., Cortical neural protheses, Annu. Rev. Neurosci., 2004, vol. 27, pp. 487–507. 58. Schwartz, A.B., Weber, D.J., Cui, X.T., et al., Brain-controlled interfaces: movement restoration with neural prosthetics, Neuron, 2006, vol. 52, pp. 205–220. 59. Seo, J., Ionescu-Zanetti, C., Diamond, J., Lal, R., and Lee, L.P., Integrated multiple patch-clamp array chip via lateral cell trapping junctions, Appl. Phys. Lett., 1973 (2004), vol. 84, p. 1973. doi: 10.1063/1.1650035. 60. Shoham, S., O’Connor D.H., Segev R., How silent is the brain: is there a “dark matter” problem in neuroscience?, J. Comp. Physiol. A, 2006, vol. 192, pp. 777–784. 61. Sodagar, A.M., Wise, K.D., and Najafi, K., A wireless implantable microsystem for multichannel neural recording, IEEE Trans. Microwave Theory Tech., 2009, vol. 57, no. 10, pp. 2565–2573. 62. Spitzer, N.C., Electrical activity in early neuronal development, Nature, 2006, vol. 444, no. 7120, pp. 1207–1214. 63. Urbanova, V., Li, Y., Vytras, K., et al., Macroporous microelectrode arrays for measurements with reduced noise, Electroanal. Chem. Interfacial Electrochem., 2011, vol. 656, pp. 91–95. 64. Wattanapanitch, W., Fee, M.S., and Sarpeshkar, R., An energy-efficient micropower neural recording amplifier, IEEE Trans. Biomed. Circuits Syst., 2007, vol. 1, no. 2, pp. 136–147. 65. Weiland, J.D. and Humayun, M.S., Visual prothesis, Proc. IEEE, 2008, vol. 96, no. 7, pp. 1076–1084. 66. Wise, K.D., Sodagar, A.M., Yao, Y., et al., Microelectrodes, microelectronics and implantable neural microsystems, Proc. IEEE, 2008, vol. 96, no. 7, pp. 1184–1202. 67. Xu, J., Guia, A., Rothwarf, D., Huang, M., Sithiphong, K., Ouang, J., Tao, G., Wang, X., and Wu, L., A benchmark study with sealchip planar patch-clamp technology, Assay Drug Dev. Technol., 2003, vol. 1, no. 5, pp. 675–684. 68. Zemianek, J.M., Serra, M., Guaraldi, M., et al., Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal network on multielectrode arrays, BioTechniques, 2012, vol. 52, no. 3, pp. 177–182. 69. Zeng, F.-G., Rebscher, S., Harrison, W., et al., Cochlear implants: system design, integration, and evolution, IEEE Rev. Biomed. Eng., 2008, vol. 1, pp. 115–142. 70. Zhang, L., Dong, L., and Nelson, B.J., Bending and buckling of rolled-up SiGe/Si microtubes using nanorobotic manipulation, Appl. Phys. Lett., 2008, vol. 92, p. 243102.