Инд. авторы: Palyanov A.Y., Ratushnyak A.S.
Заглавие: Some details of signal propagation in the nervous system of c. elegans
Библ. ссылка: Palyanov A.Y., Ratushnyak A.S. Some details of signal propagation in the nervous system of c. elegans // Russian Journal of Genetics: Applied Research. - 2015. - Vol.5. - Iss. 6. - P.642-649. - ISSN 2079-0597. - EISSN 2079-0600.
Внешние системы: DOI: 10.1134/S2079059715060064; РИНЦ: 27568167;
Реферат: eng: Among the organisms most widely used to study fundamental mechanisms of nervous system functioning, Caenorhabditis elegans is unique due to exceptionally small number of its neurons. Over a period of 25 years, it remains the only organism with a known connectome, a description of all neurons and interneuronal connections. However, this information appeared to be insufficient for deciphering the mechanisms underlying the operation of even such a small nervous system. The following years were devoted to both experimental research that significantly supplemented the obtained data and the development of computational models consolidating individual fragments of the nervous, sensory, and muscular systems. Since 2005 there have been attempts to create a virtual copy of C. elegans, a sophisticated computer model that combines the nervous, sensory, and muscle systems, the body, and part of the environment. Despite some progress in this direction, the results have not brought the researchers to a solution to the problem but instead have shed light on its actual complexity. In this paper, we examine a number of problems faced by the researcher who set out to create a biologically based model of the nervous system of C. elegans on the example of a simple nerve circuit associated with the response to the mechanosensory signal.
Ключевые слова: simulation; Neurobiology; C. elegans; electrotonic signal transduction; connectome;
Издано: 2015
Физ. характеристика: с.642-649
Цитирование: 1. Bargmann, C.I., Neurobiology of the Caenorhabditis elegans genome, Science, 1998, vol. 282, pp. 2028–2033. 2. Carnevale, N.T. and Hines, M.L., The Neuron Book, Cambridge: UK: Cambridge Univ. Press, 2006. 3. Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Brenner, S., The neural circuit for touch sensitivity in Caenorhabditis elegans, J. Neurosci., 1985, vol. 5, pp. 956–964. 4. Cohen, N. and Sanders, T., Nematode locomotion: dissecting the neuronal-environmental loop, Curr. Opin. Neurobiol., 2014, vol. 25, pp. 99–106. 5. Eckert, R., Randall, D., and Ogastin, D., Animal Physiology: Mechanisms and Adaptations, New York: W. H. Freeman, 1988. 6. Faumont, S., Rondeau, G., Thiele, T.R., Lawton, K.J., McCormick, K.E., Sottile, M., Griesbeck, O., Heckscher, E., Roberts, W.M., Doe, C.Q., and Lockery, S.R., An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans, PLoS ONE, 2011, vol. 6, no. 9, p. e24666. 7. Goodman, M.B., Hall, D.H., Avery, L., and Lockery, S.R., Active currents regulate sensitivity and dynamic range in C. elegans neurons, Neuron, 1998, vol. 20, no. 4, pp. 763–772. 8. Gueroussov, S., Lee, L.J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., Kim, T., Misquitta-Ali, C.M., Wilson, M.D., Kim, P.M., Odom, D.T., Frey, B.J., and Blencowe, B.J., The evolutionary landscape of alternative splicing in vertebrate species, Science, 2012, vol. 338, no. 6114, pp. 1587–1593. 9. Johnston, D. and Wu, S.M.S., Foundations of cellular neurophysiology, Cambridge, MA: MIT Press, 1995. 10. Lockery, S.R. and Goodman, M.B., The quest for action potentials in C. elegans neurons hits a plateau, Nat. Neurosci., 2009, vol. 12, pp. 377–378. 11. Lüersen, K., Faust, U., Gottschling, D.-C., and Doring, F., Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans, J. Exp. Biol., 2014, vol. 217, pp. 2480–2488. 12. Maguire, S.M., Clark, C.M., Nunnari, J., Pirri, J.K., and Alkema, M.J., the C. elegans touch response facilitates escape from predacious fungi, Curr. Biol., 2011, vol. 21, no. 15, pp. 1326–1330. 13. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature, 1997, vol. 388, pp. 882–887. 14. Nicholls, J.G., From Neuron to Brain, Nicholls, J.G., Martin, A.R., Wallace, B.G., and Fuchs, P.A., Eds., Sunderland: Sinauer Associates, Inc., 2001. 15. Nickell, W.T. and Pun, R.Y.K., Single ionic channels of two Caenorhabditis elegans chemosensory neurons in native membrane, J. Membr. Biol., 2002, vol. 189, pp. 55–66. 16. O’Hagan, R., Chalfie, M., and Goodman, B., The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals, Nat. Neurosci., 2005, vol. 8, no. 1, pp. 43–50. 17. Piggott, B.J., Liu, J., Feng, Z., Wescott, S.A., and Xu, X.Z., The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans, Cell, 2011, vol. 147, no. 4, pp. 922–933. 18. Rall, W., Cable theory for dendritic neurons, in Methods in Neuronal Modelling: From Synapses to Networks, Koch, C. and Segev, I., Eds., MIT Press, 1989, pp. 9–62. 19. Rankin, C.H., From gene to identified neuron to behaviour in Caenorhabditis elegans, Nat. Rev. Genet., 2002, vol. 3, pp. 622–630. 20. Rankin, C.H., Invertebrate learning: what can’t a worm learn?, Curr. Biol., 2004, vol. 14, no. 15, pp. R617–618. 21. Roehrig, C.J., Computational model of a behavior in C. elegans and a resulting framework for modularizing dynamical neuronal structures, PhD Thesis, The University of British Columbia, 1998. 22. Schafer, W.R., Research Community, WormBook, doi/10.1895/wormbook.1.111.1, http://wwwwormbookorg 23. Shen, X.N., Sznitman, J., Krajacic, P., Lamitina, T., and Arratia, P.E., Undulatory locomotion of Caenorhabditis elegans on wet surfaces, Biophys. J., 2012, vol. 102, no. 12, pp. 2772–2781. 24. Shipley, F.B., Clark, M.C., Alkema, M.J., and Leifer, A.M., Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans, Front. Neural Circuits, 2014, vol. 8, art. 28, pp. 1–8. 25. Suzuki, H., Kerr, R., Bianchi, L., Frokjr-Jensen, C., Slone, D., Xue, J., Gerstbrein, B., Driscoll, M., and Schafer, W.R., In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation, Neuron, 2003, vol. 39, pp. 1005–1017. 26. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., and Chklovskii, D.B., Structural properties of the Caenorhabditis elegans neuronal network, PLoS Comput. Biol., 2011, vol. 7, no. 2, p. e1001066. 27. Wei, A., Jegla, T., and Salkoff, L., Eight potassium channel families revealed by the C. elegans genome project, Neuropharmacology, 1996, vol. 35, no. 7, pp. 805–829. 28. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S., The structure of the nervous system of the nematode Caenorhabditis elegans, Philos. Trans. R. Soc. London, 1986, vol. 314, pp. 1–340.