Инд. авторы: | Shornikov Y.V., Bessonov A.V., Nasyrova M.S., Dostovalov D.N. |
Заглавие: | Numerical solution of hybrid systems with pde in the isma simulation environment |
Библ. ссылка: | Shornikov Y.V., Bessonov A.V., Nasyrova M.S., Dostovalov D.N. Numerical solution of hybrid systems with pde in the isma simulation environment // Университетский научный журнал. - 2014. - Iss. 10. - P.189-202. - ISSN 2222-5064. - EISSN 2222-5064. |
Внешние системы: | РИНЦ: 23220048; |
Реферат: | rus: Рассмотрен подкласс гибридных систем с режимным поведением, заданным системами дифференциальных уравнений в частных производных (ДУЧП). Архитектура инструментальной среды разработана в соответствии со стандартом CSSL (язык моделирования непрерывных систем). Приведен алгоритм метода прямых для перехода от ДУЧП к системе обыкновенных дифференциальных уравнений. Разработана и программно реализована универсальная структура данных для хранения моделей гибридных систем. Рассмотрен пример спецификации и анализа модели динамики концентрации озона в атмосфере. eng: The paper describes the subclass of hybrid systems (HS) with partial differential equations. The architecture of instrumental environment designed in accordance with CSSL (continuous system simulation language) standard is proposed. The algorithms of finite difference method for the transition from partial to ordinary differential equations system are discussed. A universal data structure for storing HS models has been designed and put forward in the paper. The example of specification and analysis of ozone concentration models is given. |
Ключевые слова: | автоматически сгенерированные синтаксические анализаторы; архитектура программного обеспечения; система дифференциальных уравнений в частных производных; гибридная система; finite difference method; autogenerated parsers; software architecture; System of partial differential equations; Hybrid system; метод конечных разностей; |
Издано: | 2014 |
Физ. характеристика: | с.189-202 |
Цитирование: | 1. Bessonov, A.V. Modified language translator LISMA. In Automated Systems and Information Technology, Digest of scientific works of Russian scientific-practical conference (Novosibirsk, September 22-23, 2011), 2011, pp. 21–26. 2. Bessonov, A.V. Simulation systems of PDE by advanced language tools environment ISMA. In Science Technology Innovation: Proceedings of the Scientific Conference of Young Scientist, 2011, pp. 35–39. 3. Breitenecker, F., & Popper, N. Classification and evaluation of features in advanced simulators. In Proceedings MATHMOD 09, 2009, Vienna. 4. Brown, P.N., & Hindmarsh, A.C. Matrix Free Methods in the Solution of Stiff systems of ODEs, Lawrence Livermore National Laboratory, 1983. 5. Claudel, C.G., & Bayen, A.M. Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws Using Hybrid Components. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2008, Vol. 4981, pp. 101–115. 6. Daafouz, J., Tucsnak, M., & Valein, J. Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line. Systems & Control Letters, 2014, Vol. 70, pp. 92–99. 7. Instrumental tools of computerized analysis (ISMA). Shornikov, Yu.V., Druzhinin, V.S., Makarov, N.A., Omelchenko, K.V., & Tomilov, I.N., Official registration license for computers No. 2005610126, Moscow, Rospatent, 2005. 8. Mitchell, I.M., & Templeton, J.A. A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2005, Vol. 3414, pp. 480–494. 9. Shornikov, Yu.V., Dostovalov, D.N., & Bessonov, A.V. Module study modes of electric machines in the ISMA. Reports of the Academy of Sciences of Higher School of the Russian Federation, 2012, pp. 128–136. 10. Strub, I.S., & Bayen, A.M. Mixed Initial-Boundary Value Problems for Scalar Conservation Laws: Application to the Modeling of Transportation Networks. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2006, Vol. 3927, pp. 552–567. 11. Thai, J. State Estimation for Polyhedral Hybrid Systems and Applications to the Godunov Scheme. HSCC’13 Proceedings of the 16th international conference on Hybrid systems: Computation and control, 2013, pp. 143–152. 12. Yashutina, O.S., Atroshenko, Yu.K., & Strizhak, P.A. Mathematical simulation of thermal contact of the thermocouple for research of an error of measurements. In Recent advances in mathematical methods in applied sciences, proc. of the 2014 intern. conf. on mathematical models and methods in applied sciences (MMMAS'14), 2014, pp. 92–99. |