Инд. авторы: | Речкунов С.Н., Принц А.В., Селезнев В.А., Голод С.В., Соотс Р.А., Иванов А.И., Ратушняк А.С., Принц В.Я. |
Заглавие: | Нейроинтерфейсы: обзор, разработка |
Библ. ссылка: | Речкунов С.Н., Принц А.В., Селезнев В.А., Голод С.В., Соотс Р.А., Иванов А.И., Ратушняк А.С., Принц В.Я. Нейроинтерфейсы: обзор, разработка // Вавиловский журнал генетики и селекции. - 2014. - Т.18. - № 4-3. - С.1077-1089. - ISSN 2500-0462. - EISSN 2500-3259. |
Внешние системы: | РИНЦ: 23001138; |
Реферат: | rus: Изучение электрической активности в нейронных сетях необходимо для расшифровки на клеточном уровне механизмов информационных процессов и объяснения таких явлений, как долговременная память, обучение и синаптическая пластичность. Необходимо создание многоэлектродных приборов для фундаментальных исследований и практических применений, предназначенных для одновременной записи и стимуляции нейронной активности. В работе представлено современное состояние дизайна, тенденций развития, преимуществ и недостатков многоэлектродной концепции. Главной задачей в дизайне нейроинтерфейсов является достижение необходимого уровня биосовместимости и малой инвазивности при сохранении высокого пространственно-временного разрешения. Мы предложили и описали оригинальные нейроинтерфейсы. Один из них основан на плотном массиве вертикальных полупроводниковых микротрубок и предназначен для будущих in vivo нейроинтерфейсов. Другой является экспериментальным in vitro многоэлектродным прибором, сформированным из 60 жидкостных пэтч-кламп электродов. Описаны результаты измерения сигналов с нейронов с помощью сформированных пэтч-кламп электродов, каждый их которых представляет собой своеобразную пипетку (диаметром 2 мкм) и позволяет реализовать контакт с мембраной клетки путем присасывания. Достоинством этого подхода является то, что клетки не имеют непосредственного контакта с металлом электродов, а контактируют с проводящей жидкостью в микроканале (ионным проводником), что обеспечивает правильность электрических измерений и повышает выживаемость клеток в процессе измерений. eng: Electrical activity seems to be the key issue for disclosing information processing mechanisms in neuronal networks; however, the related phenomena such as long-term memory, learning behavior and synaptic plasticity have not been adequately understood yet on cellular level. A great challenge in the fundamental research and practical implementation of those phenomena is to build up multi-electrode array (MEA) devices for simultaneous neuronal recordings and stimulation. We outline the state-of-the-art MEA designs, development trends, and benefits and shortcomings of the MEA concept. As a rule, the general task in neurointerface designing is to achieve biocompatible, low-invasive interface performance and the spatio-temporal resolution. In this paper, we propose and describe two innovative neuro-interface designs. One of these designs is introduced as a conceptual device based on a dense array of vertically standing semiconductor microtubes which can be implemented in future in vivo interfaces. Another design is a pilot in vitro MEA device formed by 60 planar ‘patch-clamp’ electrode sites. Here, we report results of neuron-signal measurements performed with the help of patch-clamp sucker electrodes, each of the electrodes presenting a kind of a 2-pm diameter pipette that can be used for making contacts to cell membranes. An advantageous feature of the method consists in that the treated cells have no immediate contact with the metal as they contact with the microchannel conducting liquid, or ionic conductor; the latter approach ensures more adequate measurements and, simultaneously, it improves the cell survivability during measurements. |
Ключевые слова: | нейроинтерфейс; semiconductor nanotube array; neurointerface; Brain-computer interface; рatch clamp electrodes; пэтч-кламп; полупроводниковые нанотрубки; |
Издано: | 2014 |
Физ. характеристика: | с.1077-1089 |
Цитирование: | 1. Копылов А.В., Принц В.Я. Графен-полупроводниковые трубчатые иглы для работы с живыми клетками // Вестн. НГУ Сер. Физика. 2010. Т. 5. № 1. С. 91-96 2. Принц А.В. Метод формирования массива длинных вертикальных полупроводниковых микротрубок // Нано- и микросистемная техника. 2013. № 10. С. 5-7 3. Принц В.Я., Голод С.В., Принц А.В. Полая игла в интегральном исполнении и ее изготовление: Патент России № 2341299. 2008 4. Принц В.Я., Селезнев В.А., Чеховский А.В. Самоформирующиеся полупроводниковые микро- и нанотрубки // Микросистемная техника. 2003. № 6. С. 29-34 5. Aregueta-Robles U.A., Woolley A.J., Poole-Warren L.A. et al. Organic electrode coatings for next-generation neural interfaces // Front. Neuroeng. 2014. V. 7. article 15 (18P), DOI: 10.3389/fneng.2014.00015. 6. Aryasomayajula A., Perike S., Henselc R., Posseckardt J., Gerlach G., Funk H.W. A novel patch micro electrode array for sensing ionic membrane currents // Proc. Eurosensors XXV. September 4-7, 2011. Athens, Greece. 7. Baranauskas G., Maggiolini E., Castagnola E. et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio // J. Neural Eng. 2011. V. 8. 066013. 8. Bareket-Keren L., Hahein Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects // Front. Neural Circuits. 2013. V. 6. article 122 (16P.), DOI: 10.3389/fncir.2012.00122. 9. Bruggemann A., George M., Klau M., Beckler M., Steindl J., Behrends J.C., Fertig N. High quality ion channel analysis on a chip with the NPC technology // Assay Drug Dev. Technol. 2003. V. 1. No. 5. Р 665-673. 10. Brunetti V., Maiorano G., Rizello L. et al. Neurons sense nanoscale roughness with nanometer sensitivity // Proc. Natl Acad. Sci. USA. 2010. V. 107. No. 14. P. 6264-6269. 11. Buzsaki G. Large-scale recording of neuronal ensembles // Nat. Neurosci. 2004. V. 7. P 446-451. 12. Buzsaki G., Anastassiou C.A., Koch C. The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes // Nat. Rev. Neurosci. 2012. V. 13. P. 407-420. 13. Campbell P.K., Jones K.E., Huber R.J. et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array // IEEE Trans. Biomed. Eng. 1991. V. 38. P. 758-768. 14. Carandini M. From circuits to behavior: a bridge too far? // Nat. Neurosci. 2012. V. 15. No. 4. P. 507-509. 15. Chandrakasan A.P., Verma N., Daly D.C. Ultralow-power electronics for biomedical applications // Annu. Rev. Biomed. Eng. 2008. V. 10. P. 247-274. 16. Chang C.-W., Chiou J.-C. Development of a three dimensional neural sensing device by a stacking method // Sensors. 2010. V. 10. P. 4238-4252. 17. Cogan S.F. Neural stimulation and recording electrodes // Annu. Rev. Biomed. Eng. 2008. V. 10. P. 275-309. 18. Cullen D.K., Wolf J.A., Vernekar V.N. et al. Neural tissue engineering and biohybridized microsystems for neurobio-logical investigation in vitro (Part 1) // Crit. Rev. Biomed. Eng. 2011. V. 39. P. 201-240. 19. Dale T.J., Townsend C., Hollands E.C., Trezise D.J. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening // Mol. Biosyst. 2007. V. 3. Р. 714-722. 20. Du J.G., Blanche T.J., Harrison R.R. et al. Multiplexed, high density electrophysiology with nanofabricated neural probes // PloS ONE. 2011. V. 6. No. 10. e26204. 21. Du J.G., Roukes M.L., Masmanidis S.C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates // J. Micromech. Microeng. 2009. V. 19. 075008. 22. Fertig N., Blick R.H., Behrends J.C. Whole cell patch clamp recording performed on a planar glass chip // Biophys. J. 2002. V. 82. Р 3056-3062. 23. Fertig N., Tilke A., Blick R.H., Kotthaus J.P., Behrend J.C., ten Bruggencate G. Stable integration of isolated cell membrane patches in a nanomachined aperture // Appl. Phys. Lett. 2000. V. 77. Р 1218-1220. 24. Grill W.M., Norman S.E., Bellamkonda R.V. Implanted neural interfaces: biochallenges and engineered solutions // Annu. Rev. Biomed. Eng. 2009. V. 11. P. 1 24. 25. Guthrie H., Livingston F.S., Gubler U., Garippa R. A place for high-throughput electrophysiology in cardiac safety: screening hERG cell lines and novel compounds with the IonWorks HT system // J. Biomol. Screen. 2006. V. 10. No. 8. Р 832-840. 26. Henze D.A., Borhegyi Z., Csicvari J. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo // J. Neurophysiol. 2000. V. 84. P. 390-400. 27. Herwik S., Kisban S., Aarts A.A.A. et al. Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording // J. Micromech. Microeng. 2009. V. 19. 074008. 28. Hubel D.H. Tungsten microelectrode for recording from single units // Science. 1957. V. 125. P. 549-550. 29. John V.H., Dale T.J., Hollands E.C., Chen M.X., Partington L., Downie D.L., Meadows H.J., Trezise D.J. Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels // J. Biomol. Screen. 2007. V. 12. P. 50. DOI: 10.1177/1087057106294920. 30. Kiss L., Bennett P.B., Uebele V.N., Koblan K.S., Kane S.A., Neagle B., Schroeder K. High throughput ion-channel pharmacology: planar-array-based voltage clamp // Assay Drug Dev. Technol. 2003. V. 1. Р 127-135. 31. Klemic K.G., Klemic J.F., Reed M.A., Sigworth F. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells // Biosens. Bioelectron. 2002. V. 17. Р 597-604. 32. Lai H.-Y., Liao L.-D., Lin C.-T. et al. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording // J. Neural Eng. 2012. V. 9. 036001 (15 p.). 33. Lebedev M.A., Nicolelis A.L. Brain-machine interfaces: Past, present and future // Trends Neurosci. 2006. V. 29. No. 9. P. 536-546. 34. Lee C.K., Huguenard J.R. Martinotti cells: community organizers // Neuron. 2011. V. 69. No. 6. P. 1042-1045. 35. Lehnert T., Gijs M.A.M., Netzer R., Bischoff U. Realization of hollow SiO2 micronozzle for electrical measurements on living cells // Appl. Phys. Lett. 2002. V 81. Р 5063-5065. 36. Levy R.B., Reyes A.D. Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex // J. Neurosci. 2012. V. 32. No. 16. P. 5609-5619. 37. Li X., Klemic K.G., Reed M.A., Sigworth F.J. Microfluidic system for planar patch clamp electrode arrays // Nano Lett. 2006. V. 6. No. 4. Р 815-819. 38. Ludwig K.A., Langhals N.B., Joseph M.D. et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes // J. Neural Eng. 2011. V. 8. 014001. 39. Maccione A., Gandolfo M., Tedesco M. et al. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects // Front. Neuroeng. 2010. V. 3. article 4, P. 1-12, DOI: 10.3389/fneng.2010.00004. 40. Martina M., Luk C., Py C., Martinez D., Comas T., Monette R., Denhoff M., Syed N., Mealing G.A. Recordings of cultured neurons and synaptic activity using patch-clamp chips // J. Neural Eng. 2011. V. 8. 034002, (10 p). 41. Martinez D., Py C., Denhoff M.W., Martinac M., Monette R., Comas T., Luk C., Syed N., Mealing G. Highfidelity patch-clamp recordings from neurons cultured on a polymer microchip // Biomed. Microdevices. 2010. 12:977-985DOI 10.1007/s10544-010-9452-z. 42. McCarthy P.T., Rao M.P., Otto K.J. Simultaneous recording of rat auditory cortex and thalamus via a titanium-based, microfabricated, microelectrode device // J. Neural. Eng. 2011. V. 8. 046007. 43. Najafi K., Wise K.D. Mochizuki T. A high-yield IC-compatible multichannel recording array // IEEE Trans. Electron. Devices. 1985. V. 32. P. 1206-1211. 44. Napoli A., Xie J., Obeid I. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis // BMC Neuroscience. 2014. V. 15. No. 1. P. 17-27. 45. Nicolelis M.A.L., Dimitrov D., Carmena J.M. et al. Cronic, multisite, multielectrode recordings in macaque monkeys // Proc. Natl Acad. Sci. USA. 2003. V. 100. P. 11041- 11046. 46. Oberlaender M., Boudewijns Z., Kleelec T. et al. Three-dimensional axon morphologies of individual layer 5 neuron indicate cell type-specific intracortical pathways for whisker motion and touch // Proc. Natl Acad. Sci. USA. 2011. V. 108. No. 10. P. 4188-4193. 47. Pantoja R., Nagarah J.M., Starace D.M., Melosh N.A., Blunck R., Bezanilla F., Heath J.R. Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics // Biosens. Bioelectron. 2004. V. 20. Р. 509-517. 48. Prinz A.V., Prinz V.Ya. Application of semiconductor micro- and nanotubes in biology // Surface Science. 2003. V. 532-535. Р 911-915. 49. Prinz A.V., Prinz V.Ya., Seleznev V.A. Semiconductor micro-and nanoneedles for microinjections andink-jet printing // Microelectronic Engineering. 2003. V. 67/68. Р. 782-788. 50. Prinz V.Ya., Seleznev V.A., Gutakovsky A.K. Self-formed InGaAs/GaAs Nanotubes: Concept, Fabrication, Properties // Proc. of the 24th Intern. Conf. on the Physics of Semiconductors / Ed. D. Gershoni. World Scientific, Singapore, 1998. 51. Prinz V.Ya., Seleznev V.A., Gutakovsky A.K., Chehovskiy A.V., Preobrazenskii V.V., Putyato M.A., Gavrilova T.A. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays // Physica E. 2000. V. 6. No. 1/4. Р. 828-831. 52. Py C., Denhoff M.W., Martinac M., Monette R., Comas T., Ahuja T., Martinez D., Wingar S., Caballero J., Laframboisea S., Mielkec J., Bogdanov A., Luk C., Syed N., Mealing G. A novel silicon patch-clamp chip permits highfidelity recording of ion channel activity from functionally defined neurons // Biotechnology and Bioengineering. 2010. V. 107. No. 4. P. 593-600 53. Py C., Denhoff M.W., Sabourin N., Weber J., Shiu M., Zhao P. Priming and testing silicon patch-clamp neurochips // New Biotechnol. 2014. V. 31. No. 5. Р. 430-435. doi: 10.1016/j.nbt.2014.04.003 54. Rutten W.L.C. Selective electrical interfaces with the nervous system // Annu. Rev. Biomed. Eng. 2002. V 4. P. 407-452 55. Ruz I.D., Schulz S.R. Localizing and classifying neurons from high density MEA recordings // J. Neurosci. Methods. 2014. V. 233. P. 115-128 56. Sarpeshkar R., Wattanapanitch W., Arfin S.K. et al. Low-power circuits for brain-machine interfaces // IEEE Trans. Biomed. Circuits Syst. 2008. V. 2. No. 3. P. 173-183. 57. Schwartz A.B. Cortical neural protheses // Annu. Rev. Neurosci. 2004. V. 27. P. 487 507. 58. Schwartz A.B., Weber D.J., Cui X.T. et al. Brain-controlled interfaces: Movement restoration with neural prosthetics // Neuron. 2006. V. 52. P. 205-220. 59. Seo J., Ionescu-Zanetti C., Diamond J., Lal R., Lee L.P. Integrated multiple patch-clamp array chip via lateral cell trapping junctions //Applied Physics Letters. 1973. (2004) V. 84. P. 1973. doi: 10.1063/1.1650035. 60. Shoham S., O’Connor D.H., Segev R. How silent is the brain: is there a «dark matter» problem in neuroscience? // J. Comp. Physiol. A. 2006. V. 192. P. 777-784. 61. Sodagar A.M., Wise K.D., Najafi K. A wireless implantable microsystem for multichannel neural recording // IEEE Trans. Microwave Theory Tech. 2009. V. 57. No. 10. P. 2565-2573. 62. Spitzer N.C. Electrical activity in early neuronal development // Nature. 2006. V. 444. No. 7120. P. 1207-1214. 63. Urbanova V., Li Y., Vytras K. et al. Macroporous microelectrode arrays for measurements with reduced noise // J. Electroanalyt. Chem. 2011. V. 656. P. 91-95. 64. Wattanapanitch W., Fee M.S., Sarpeshkar R. An energy-efficient micropower neural recording amplifier // IEEE Trans. Biomed. Circuits Syst. 2007. V. 1. No. 2. P. 136-147. 65. Weiland J.D., Humayun M.S. Visual prothesis // Proc. IEEE. 2008. V. 96. No. 7. P. 1076-1084. 66. Wise K.D., Sodagar A.M., Yao Y. et al. Microelectrodes, microelectronics and implantable neural microsystems // Proc. IEEE. 2008. V. 96. No. 7. P. 1184-1202. 67. Xu J., Guia A., Rothwarf D., Huang M., Sithiphong K., Ouang J., Tao G., Wang X., Wu L. A benchmark study with sealchip planar patch-clamp technology // Assay Drug Dev. Technol. 2003. V. 1. No. 5. Р. 675-684. 68. Zemianek J.M., Serra M., Guaraldi M. et al. Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal network on multielectrode arrays // Biotechniques. 2012. V. 52. No. 3. P. 177-182. 69. Zeng F.-G., Rebscher S., Harrison W. et al. Cochlear implants: System design, integration, and evolution // IEEE Rev. Biomed. Eng. 2008. V. 1. P. 115-142. 70. Zhang L., Dong L., Nelson B.J. Bending and buckling of rolled-up SiGe/Si microtubes using nanorobotic manipulation // Appl. Phys. Lett. 2008. V. 92. 243102. |