Цитирование: | 1. [1] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. Second edition, 2000, Wiley, NY.
2. [2] Jain, A.K., Dubes, R.C., Algorithms for Clustering Data. 1988, Prentice Hall, NJ.
3. [3] Jain, A.K., Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31:8 (2010), 651–666.
4. [4] Ghosh, J., Acharya, A., Cluster ensembles. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 1:5 (2011), 305–315.
5. [5] Vega-Pons, S., Ruiz-Shulcloper, J., A survey of clustering ensemble algorithms. IJPRAI 25:3 (2011), 337–372.
6. [6] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
7. [7] Kuncheva, L., Combining Pattern Classifiers. Methods and Algorithms. 2004, Wiley, NJ.
8. [8] Buza, K., Nanopoulos, A., Horvath, T., Schmidt-Thieme, L., GRAMOFON: general model-selection framework based on networks. Neurocomputing 75:1 (2012), 163–170.
9. [9] Fred, A., Jain, A., Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), 835–850.
10. [10] Frossyniotis, D., Likas, A., Stafylopatis, A., A clustering method based on boosting. Pattern Recognit. Lett. 25:7 (2004), 641–654.
11. [11] A. Topchy, M. Law, A. Jain, A. Fred, Analysis of consensus partition in cluster ensemble, in: Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM'04), 2004, pp. 225–232.
12. [12] T. Li, C. Ding, Weighted consensus clustering, in: Proceedings of the 2008 SIAM International Conference on Data Mining, SDM, 2008, pp. 798–809.
13. [13] F. Gullo, A. Tagarelli, S. Greco, Diversity-based weighting schemes for clustering ensembles, in: Proceedings of the 2009 SIAM International Conference on Data Mining, SDM, 2009, pp. 437–448.
14. [14] Fern, X.Z., Lin, W., Cluster ensemble selection. J. Stat. Anal. Data Min. 1:3 (2008), 128–141.
15. [15] Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P., Moderate diversity for better cluster ensembles. Inf. Fusion. 7:3 (2006), 264–275.
16. [16] Naldi, M.C., Carvalho, A.C.P.L.F., Campello, R.J.G.B., Cluster ensemble selection based on relative validity indexes. Data Min. Knowl. Discov. 27 (2013), 259–289.
17. [17] Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Perez, J., Perona, I., An extensive comparative study of cluster validity indices. Pattern Recognit., 2013, 243–256.
18. [18] S. Vega-Pons, J. Correa-Morris, J. Ruiz-Shulcloper, Weighted cluster ensemble using a kernel consensus function, LNAI, vol. 5197, 2008, pp. 195–202.
19. [19] Wang, X., Yang, C., Zhou, J., Clustering aggregation by probability accumulation. Pattern Recognit. 42:5 (2009), 668–675.
20. [20] Al-razgan, M., Domeniconi, C., Weighted cluster ensembles: methods and analysis. ACM Trans. Knowl. Discov. Data 2:4 (2009), 17–40 (17:1).
21. [21] N. Iam-On, T. Boongoen, S. Garrett, Refining pairwise similarity matrix for cluster ensemble problem with cluster relations, Discovery Science, LNAI, vol. 5255, 2008, pp. 222–233.
22. [22] Zhong, C., Yue, X., Zhang, Z., Lei, J., A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recognit. 48:8 (2015), 2699–2709.
23. [23] Berikov, V., A latent variable pairwise classification model of a clustering ensemble. Sansone, C., Kittler, J., Roli, F., (eds.) Multiple Classifier Systems, 2011, Lecture Notes on Computer Science, 6713, 2011, Springer, Heidelberg, 279–288.
24. [24] Berikov, V., Weighted ensemble of algorithms for complex data clustering. Pattern Recognit. Lett. 38 (2014), 99–106.
25. [25] Ablin, R., Sulochana, C.H., A survey of hyperspectral image classification in remote sensing. Int. J. Adv. Res. Comput. Commun. Eng. 2:8 (2013), 2986–3003.
26. [26] 〈 http://alweb.ehu.es/ccwintco/index.php?Title=Hyperspectral_Remote_Sensing_Scenes 〉.
27. [27] N.A. Weiss, A Course in Probability, 2005.
|