Инд. авторы: | Проскура А.Л., Вечкапова С.О., Запара Т.А., Ратушняк А.С. |
Заглавие: | Реконструкция молекулярного интерактома в системе глутаматных синапсов |
Библ. ссылка: | Проскура А.Л., Вечкапова С.О., Запара Т.А., Ратушняк А.С. Реконструкция молекулярного интерактома в системе глутаматных синапсов // Вавиловский журнал генетики и селекции. - 2014. - Т.18. - № 4-3. - С.1205-1218. - ISSN 2500-0462. - EISSN 2500-3259. |
Внешние системы: | РИНЦ: 23001150; |
Реферат: | rus: Субъединичный состав ионотропных глутаматергических рецепторов играет важную роль в функционировании синапсов. НМДА рецепторы опосредуют быструю возбуждающую нейропередачу и способны конвертировать специфические паттерны нейрональной активности в долговременные изменения синаптической структуры и функций. Основные функциональные свойства (ионная проводимость, чувствительность к глутамату и агонистам, ионам магния, время деактивации), пространственное расположение, закрепление на мембране, чувствительность к фармакологическим агентам определяются их субъединичной композицией. Исследование системы межбелковых взаимодействий в макрокомплексах субъединиц НМДА рецепторов является актуальной задачей. Ее решение позволит приблизиться к пониманию принципов и молекулярных механизмов реализации основных функций нейронов, механизмов развития патологических состояний, поиску фармакологических и терапевтических мишеней их коррекции. Целью работы явилось проанализировать и реконструировать белок-белковые взаимодействия субъединиц НМДА рецепторов, которые обеспечивают их подвижность и закрепление на синаптической мембране, а также функциональную роль в процессах изменения и поддержания эффективности синаптической передачи в гиппокампе. Выделено три группы белков. Они обеспечивают формирование макрокомплексов НМДА рецепторов в глутаматергических синапсах гиппокампа. Белки разнесены на группы по их функции в комплексах на основании информации из различных баз данных, научных статей, в которых охарактеризованы структура гена и белка, экспрессия в мозге, их роль в процессах синаптической пластичности. Особое внимание уделялось белкам, для которых установлена связь с различными когнитивными нарушениями. eng: The subunit composition of ionotropic glutamate receptors plays a significant role in synapse functioning. NMDA receptors mediate fast excitatory neurotransmission. They can convert specific patterns of neuronal activity to long-term changes of the synaptic structure and functions. The main functional properties (ionic conductivity, sensitivity to glutamate and agonists, sensitivity to magnesium ions, and deactivation time), spatial location, anchoring on the membrane, and sensitivity to pharmacological agents are defined by their subunit composition. The investigation of the protein-protein interaction system in macrocomplexes of NMDA receptor subunits is an urgent task. Its solution will shed light on the principles and molecular mechanisms that implement the main functions of a neuron and on mechanisms of disorder development. It will be helpful in the search for pharmacological and therapeutic targets for their corrections. The aim of this investigation is to analyze and reconstruct the protein-protein interactions of NMDA receptor subunits that support their mobility and anchoring on the synaptic membrane, as well as their role in the processes of modulation and support of synaptic transmission efficiency in the hippocampus. Three groups of proteins have been recognized. They support the formation of macrocomplexes of NMDA receptors in the glutamatergic synapses of the hippocampus. Proteins are divided into groups according to their functions in complexes. The division is based on information from different databases and scientific articles where the structures of genes and proteins, expression in the brain, and roles in the processes of synaptic plasticity are described. Special attention is focused on proteins for which associations with various cognitive disorders have been established. |
Ключевые слова: | глутаматные рецепторы; synaptic plasticity; glutamate receptors; Macrocomplexes; макрокомплексы; синаптическая пластичность; |
Издано: | 2014 |
Физ. характеристика: | с.1205-1218 |
Цитирование: | 1. Проскура А. Л., Малахин И. А., Турнаев И.И., Суслов В.В., Запара Т.А., Ратушняк А.С. Межмолекулярные взаимодействия в функциональных системах нейрона // Вавилов. журн. генет. и селекции. 2013. Т. 17. Вып. 4/1. С. 620-628 2. Сергеев П.В., Шимановский Н. Л., Петров В.И. Рецепторы физиологически активных веществ. Волгоград: Семь ветров, 1999. 640 с 3. Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats // J. Comp. Neurol. 1994. V. 347. P. 150-160. 4. Almeida O.P., Schwab S.G., Lautenschlager N.T., Morar B., Greenop K.R., Flicker L., Wildenauer D. KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment // J. Cell Mol. Med. 2008. V. 12. №. 5. P. 1672-1676. 5. Arévalo J.C., Pereira D.B., Yano H., Teng K.K., Chao M.V. Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation // J. Biol. Chem. 2006. V. 281. №. 2. P. 1001-1007. 6. Arévalo J.C., Yano H., Teng K.K., Chao M.V. A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein // EMBO J. 2004. V. 23. №. 12. P. 2358-2368. 7. Bochet P., Rossier J. Molecular biology of excitatory amino acid receptors: subtypes and subunits // EXS. 1993. V. 63. P. 224-233. 8. Burgess J.D., Pedraza O., Graff-Radford N.R., Hirpa M., Zou F., Miles R., Nguyen T., Li M., Lucas J.A., Ivnik R.J., Crook J., Pankratz V.S., Dickson D.W., Petersen R.C., Younkin S.G., Ertekin-Taner N. Association of common KIBRA variants with episodic memory and AD risk // Neurobiol Aging. 2011. V. 32. №. 3. P. 557.e1-557.e9. available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065956/. DOI: 10.1016/j.neurobiolaging.2010.11.004. 9. Cai W., Hisatsune C., Nakamura K., Nakamura T., Inoue T., Mikoshiba K. Activity-dependent expression of inositol 1,4,5-trisphosphate receptor type 1 in hippocampal neurons // J. Biol. Chem. 2004. V. 279. №. 22. P. 23691-23698. 10. Chen X., Vinade L., Leapman R.D., Petersen J.D., Nakagawa T., Phillips T.M., Sheng M., Reese T.S. Mass of the postsynaptic density and enumeration of three key molecules // Proc. Natl Acad. Sci. USA. 2005. V. 102. №. 32. P. 11551-11556. 11. Chen X., Winters C., Azzam R., Li X., Galbraith J.A., Leapman R.D., Reese T.S. Organization of the core structure of the postsynaptic density // Proc. Natl Acad. Sci. USA. 2008. V. 105. №. 11. P. 4453-4458. 12. Cheng D., Hoogenraad C.C., Rush J., Ramm E., Schlager M.A., Duong D.M., Xu P., Wijayawardana S.R., Hanfelt J., Nakagawa T., Sheng M., Peng J. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum // Mol. Cell Proteomics. 2006. V. 5. №. 6. P 1158-1170. 13. Chung H.J., Huang Y.H., Lau L.F., Huganir R.L. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand // J. Neurosci. 2004. V. 24. №. 45. P. 10248-10259. 14. Collins M.O., Husi H., Yu L., Brandon J.M., Anderson C.N., Blackstock W.P., Choudhary J.S., Grant S.G. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome // J. Neurochem. 2006. V. 97. P. 16-23. 15. Corneveaux J.J., Liang W.S., Reiman E.M., Webster J.A., Myers A.J., Zismann V.L., Joshipura K.D., Pearson J.V., Hu-Lince D., Craig D.W., Coon K.D., Dunckley T., Bandy D., Lee W., Chen K., Beach T.G., Mastroeni D., Grover A., Ravid R., Sando S.B., Aasly J.O., Heun R., Jessen F., Kölsch H., Rogers J., Hutton M.L., Melquist S., Petersen R.C., Alexander G.E., Caselli R.J., Papassotiropoulos A.,Stephan D.A., Huentelman M.J. Evidence for an association between KIBRA and late-onset Alzheimer’s disease // Neurobiol. Aging. 2010. V. 31. Na 6. P. 901-909 16. Counts S.E., Alldred M.J., Che S., Ginsberg S.D., Mufson E.J. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment // Neuropharmacology. 2014. V. 79. P. 172-179 17. Cousins S.L., Kenny A.V., Stephenson F.A. Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association // Neuroscience. 2009а. V. 158. №. 1. P. 89-95. 18. Cousins S.L., Hoey S.E., Stephenson F.A., Perkinton M.S. Amyloid precursor protein 695 associates with assembled NR2A- and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery // J. Neurochem. 2009b. V. 111. №. 6. P. 1501-1513. 19. Cousins S.L., Innocent N., Stephenson F.A. Neto1 associates with the NMDA receptor/amyloid precursor protein complex // J. Neurochem. 2013. V. 126. №. 5. P. 554-564. 20. de Bruijn D.R., van Dijk A.H., Pfundt R., Hoischen A., Merkx G.F., Gradek G.A., Lybæk H., Stray-Pedersen A., Brunner H.G., Houge G. Severe progressive autism associated with two de novo changes: A 2.6-Mb 2q31.1 deletion and a balanced t(14;21)(q21.1;p11.2) translocation with long-range epigenetic silencing of LRFN5 expression // Mol. Syndromol. 2010. V. 1. №. 1. P. 46-57. 21. Deguchi M., Hata Y., Takeuchi M., Ide N., Hirao K., Yao I., Irie M., Toyoda A., Takai Y. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein // J. Biol. Chem. 1998. V. 273. №. 41. P. 26269-26272. 22. Deng F., Price M.G., Davis C.F., Mori M., Burgess D. Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain // J. Neurosci. 2006. V. 26. №. 30. P. 7875-7884. 23. Dumas T.C. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning // Prog. Neurobiol. 2005. V. 76. P. 189-211. 24. Erecinska M., Silver I.A. Metabolism and role of glutamate in mammalian brain // Prog. Neurobiol. 1990. V. 35. №. 4. P. 245-296. 25. Fan X., Jin W.Y., Wang Y.T. The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse // Front Cell Neurosci. 2014. available at http://www.ncbi. nlm.nih.gov/pmc/articles/PMC4051310/pdf/fncel-08-00160.pdf. DOI: 10.3389/fncel.2014.00160. 26. Galecki P., Szemraj J., Florkowski A., Talarowska M., Bi enkiewicz M., Galecka E., Lewinski A. Single nucleotide polymorphism of the KIBRA gene in recurrent depressive disorders // Neurocndocrinol. Lett. 2010. V. 31. №. 1. P. 97-102 27. Gerek Z.N., Keskin O., Ozkan S.B. Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior // Proteins. 2009. V. 77. №. 4. P. 796-811. 28. Gout I., Middleton G., Adu J., Ninkina N.N., Drobot L.B., Filonenko V., Matsuka G., Davies A.M., Waterfield M., Buchman V.L. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein // EMBO J. 2000. V. 19. №. 15. P. 4015-4025. 29. Hamdan F.F., Gauthier J., Araki Y. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability // Am. J. Hum. Genet. 2011. V 88. №. 3. P. 306-316. 30. Harris K.M., Stevens J.K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics // J. Neurosci. 1989. №. 9. P. 2982-2997. 31. Hawley D.F., Morch K., Christie B.R. Differential response of hippocampal subregions to stress and learning // PLoS One. 2012. V. 7. №. 12. P. E53126. 32. Hedegaard M., Hansen K.B., Andersen K.T., Bräuner-Osborne H., Traynelis S.F. Molecular pharmacology of human NMDA receptors // Neurochem. Int. 2012. V. 61. №. 4. P. 601-609. 33. Hirao K., Hata Y., Ide N., Takeuchi M., Irie M., Yao I., Deguchi M., Toyoda A., Sudhof T.C., Takai Y. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins // J. Biol. Chem. 1998. V. 273. №. 33. P. 21105-21110. 34. Hoe H.S., Pocivavsek A., Chakraborty G., Fu Z., Vicini S., Ehlers M.D., Rebeck G.W. Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor // J. Biol. Chem. 2006. V. 281. №. 6. P. 3425-3431. 35. Husi H., Grant S.G. Isolation of 2000-kDa complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain // J. Neurochem. 2001. V. 77. P. 281-291. 36. Iglesias T., Cabrera-Poch N., Mitchell M.P., Naven T.J., Rozengurt E., Schiavo G. Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D // J. Biol. Chem. 2000. V. 275. №. 51. P. 40048-40056. 37. Iida J., Hirabayashi S., Sato Y., Hata Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin // Mol. Cell. Neurosci. 2004. V. 27. №. 4. P. 497-508. 38. Iida J., Ishizaki H., Okamoto-Tanaka M., Kawata A., Sumita K., Ohgake S., Sato Y., Yorifuji H., Nukina N., Ohashi K., Mizuno K., Tsutsumi T., Mizoguchi A., Miyoshi J., Takai Y., Hata Y. Synaptic scaffolding molecule alpha is a scaffold to mediate N-methyl-D-aspartate receptor-dependent RhoA activation in dendrites // Mol. Cell. Biol. 2007. V. 27. №. 12. P. 4388-4405. 39. Jaskolski F., Martin S., Henley J.M. Retaining synaptic AMPARs // Neuron. 2007. V. 55. №. 6. P. 825-827. 40. Johannsen S., Duning K., Pavenstädt H., Kremerskothen J., Boeckers T.M. Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA // Neuroscience. 2008. V. 155. №. 4. P. 1165-1173. 41. Kawata A., Iida J., Ikeda M., Sato Y., Mori H., Kansaku A., Sumita K., Fujiwara N., Rokukawa C., Hamano M., Hirabayashi S., Hata Y. CIN85 is localized at synapses and forms a complex with S-SCAM via dendrin // J. Biochem. 2006. V. 139. №. 5. P. 931-939. 42. Kiraly D.D., Lemtiri-Chlieh F., Levine E.S., Mains R.E., Eipper B.A. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function // J. Neurosci. 2011. V. 31. №. 35. P. 12554-12565. 43. Kjelstrup K.B., Solstad T., Brun V.H., Hafting T., Leutgeb S., Witter M.P., Moser E.I., Moser M.B. Finite scale of spatial representation in the hippocampus // Science. 2008. V. 321. Ко. 5885. P. 140-143. 44. Ko J., Kim S., Chung H.S., Kim K., Han K., Kim H., Jun H., Kaang B.K., Kim E. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses // Neuron. 2006. V. 50. №. 2. P. 233-245. 45. Krapivinsky G., Medina I., Krapivinsky L., Gapon S., Clapham D.E. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation // Neuron. 2004. V. 43. №. 4. P. 563-574. 46. Lau C.G., Zukin R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders // Nature Rev. Neurosci. 2007. V. 8. №. 6. P. 413-426. 47. Lauriat T.L., Dracheva S., Kremerskothen J., Duning K., Haroutunian V., Buxbaum J.D., Hyde T.M., Kleinman J.E., McInnes L.A. Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton // Brain Res. 2006. V. 1121. №. 1. P. 1-11. 48. Lee H.G., Zhu X., O’Neill M.J., Webber K., Casadesus G., Marlatt M., Raina A.K., Perry G., Smith M.A. The role of metabotropic glutamate receptors in Alzheimer’s disease // Acta. Neurobiol. Exp. (Wars). 2004. V. 64. №. 1. P. 89-98. 49. Lôpez-Menéndez C., Gascón S., Sobrado M., Vidaurre O.G., Higuero A.M., Rodríguez-Peña A., Iglesias T., Díaz-Guerra M. Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways // J. Cell. Sci. 2009. V. 122. №. 19. P. 3554-3565. 50. Lu J., Helton T.D., Blanpied T.A., Racz B., Newpher T.M., Weinberg R.J., Ehlers M.D. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer // Neuron. 2007. V. 55. №. 6. P. 874-889. 51. Lujan R., Roberts J.D., Shigemoto R., Ohishi H., Somogyi P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites // J. Chem. Neuroanat. 1997. V. 13. №. 4. P. 219-241. 52. Makuch L., Volk L., Anggono V., Johnson R.C., Yu Y., Duning K., Kremerskothen J., Xia J., Takamiya K., Huganir R.L. Regulation of AMPA receptor function by the human memory-associated gene KIBRA // Neuron. 2011. V. 71. №. 6. P. 1022-1029. 53. Molnar E. Are Neto1 and APP auxiliary subunits of NMDA receptors? // J. Neurochem. 2013. V. 126. №. 5. P. 551-553. 54. Moloney M.G. Excitatory amino acids // PLoS One. 2002. V. 19. №. 5. P. 597-616. 55. Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors // Neuron. 1994. V. 12. P. 529-540. 56. Murata Y., Doi T., Taniguchi H., Fujiyoshi Y. Proteomic analysis revealed a novel synaptic proline-rich membrane protein (PRR7) associated with PSD-95 and NMDA receptor // Biochem. Biophys. Res. Commun. 2005. V. 327. №. 1. P. 183-191. 57. Nagasawa M., Sakimura K., Mori K.J., Bedell M.A., Copeland N.G., Jenkins N.A., Mishina M. Gene structure and chromosomal localization of the mouse NMDA receptor channel subunits // Brain. Res. Mol. Brain. Res. 1996. V. 36. №. 1. P. 1-11. 58. Nam J., Mah W., Kim E. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules // Semin Cell Dev. Biol. 2011. V. 22. №. 5. P. 492-498. 59. Newpher T.M., Ehlers M.D. Glutamate receptor dynamics in dendritic microdomains // Neuron. 2008. V. 58. №. 4. P. 472-497. 60. Ng D., Pitcher G.M., Szilard R.K., Sertié A., Kanisek M., Clapcote S.J., Lipina T., Kalia L.V., Joo D., McKerlie C., Cortez M., Roder J.C., Salter M.W., McInnes R.R. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning // PLoS Biol. 2009. V. 7. №. 2. P. 0278-0300. available at http://www. plosbiology. org/article/info%3Adoi%2F10.1371%2Fjourn al.pbio.1000041/. D0I:10.1371/journal.pbio.1000041 61. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones // Nature. 1984. V. 307. №. 5950. P. 462-465. 62. Paoletti P. Molecular basis of NMDA receptor functional diversity // Eur. J. Neurosci. 2011. V. 33. №. 8. P. 1351-1365. 63. Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease // Nat. Rev. Neurosci. 2013. V. 14. №. 6. P. 383-400. 64. Papouin T., Ladépêche L., Ruel J., Sacchi S., Labasque M., Hanini M., Groc L., Pollegioni L., Mothet J.P., Oliet S.H. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists // Cell. 2012. V. 150. №. 3. P. 633-646. 65. Papouin T., Oliet S.H. Organization, control and function of extrasynaptic NMDA receptors // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014. V. 369. №. 1654. available at http://rstb. royalsocietypublishing.org/content/369/1654/20130601. long/. DOI: 10.1098/rstb.2013.0601 66. Park E., Na M., Choi J., Kim S., Lee J.R., Yoon J., Park D., Sheng M., Kim E. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42 // J. Biol. Chem. 2003. V. 278. №. 21. P. 19220-19229. 67. Peng J., Kim M.J., Cheng D., Duong D.M., Gygi S.P., Sheng M. Semiquantitative proteomic analysis of rat forebrain post-synaptic density fractions by mass spectrometry // J. Biol. Chem. 2004. V. 279. №. 20. P. 21003-21011. 68. Penzes P., Johnson R.C., Sattler R., Zhang X., Huganir R.L., Kambampati V., Mains R.E., Eipper B.A. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis // Neuron. 2001. V. 29. №. 1. P. 229-242 69. Racca C., Stephenson F.A., Streit P., Roberts J.D.B., Somogyi P. NMDA receptor content of synapses in striatum radiatum of the hippocampal CA1 area // J. Neurosci. 2000. V. 20. №. 7. P. 2512-2522. 70. Raghuram V., Sharma Y., Kreutz M.R. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+) // Front. Mol. Neurosci. 2012. V. 5. P. 61. 71. Rodríguez-Rodríguez E., Infante J., Llorca J., Mateo I., Sánchez-Quintana C., García-Gorostiaga I., Sánchez-Juan P., Berciano J., Combarros O. Age-dependent association of KIBRA genetic variation and Alzheimer’s disease risk // Neurobiol. Aging. 2009. V. 30. №. 2. P. 322-324. 72. Schito A.M., Pizzuti A., Di M.E., Schenone A., Ratti A., Defferrari R., Bellone E., Mancardi G.L., Ajmar F., Mandich P. mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit // Neurosci. Lett. 1997. V. 239. №. 1. P. 49-53. 73. Sheng M., Cummings J., Roldan L.A., Jan Y.N., Jan L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex // Nature. 1994. V. 368. P. 144-147. 74. Shiraishi-Yamaguchi Y., Sato Y., Sakai R., Mizutani A., Knöpfe T., Mori N., Mikoshiba K., Furuichi T. Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines // BMC Neurosci. 2009. V. 10. P. 25 75. Smrt R., Zhao X. Epigenetic regulation of neuronal dendrite and dendritic spine development // Front. Biol. 2010. V. 5. №. 4. P. 304-323. 76. Takumi Y., Ramírez-León V., Laake P., Rinvik E., Ottersen O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses // Nat. Neurosci. 1999. V. 2. №. 7. P. 618-624. 77. Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate receptor ion channels: structure, regulation, and function // Pharmacol. Rev. 2010. V. 62. №. 3. P. 405-496. 78. Tu H., Tang T.S., Wang Z. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A // J. Biol. Chem. 2004. V. 279. №. 18. P. 19375-19382 79. Tu J.C., Xiao B., Naisbitt S., Yuan J.P., Petralia R.S., Brakeman P., Doan A., Aakalu V.K., Lanahan A.A., Sheng M., Worley P.F. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins // Neuron. 1999. V. 23. №. 3. P. 583-592 80. Ullmer C., Schmuck K., Figge A., Lübbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein // FEBS Lett. 1998. V. 424. №. 1/2. P. 63-68 81. Wu S.H., Arévalo J.C., Sarti F., Tessarollo L., Gan W.B., Chao M.V. Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo // Dev. Neurobiol. 2009. V. 69. №. 9. P. 547-557 82. Zhang H., Wang D., Sun H., Hall R.A., Yun C.C. MAGI-3 regulates LPA-induced activation of Erk and RhoA // Cell. Signal. 2007. V. 19. №. 2. P. 261-268 |