Инд. авторы: Литасов К.Д., Шацкий А.Ф.
Заглавие: Современные представления о составе ядра земли
Библ. ссылка: Литасов К.Д., Шацкий А.Ф. Современные представления о составе ядра земли // Геология и геофизика. - 2016. - Т.57. - № 1. - С.31-62. - ISSN 0016-7886.
Внешние системы: DOI: 10.15372/GiG20160103; РИНЦ: 25239688;
Реферат: rus: Сделан обзор современных представлений о составе и эволюции ядра Земли. На основании сравнения экспериментальных данных о плотности Fe с геофизическими данными показано, что внешнее жидкое ядро имеет однородную структуру и дефицит плотности около 10 %, а внутреннее твердое ядро имеет сильно неоднородную структуру с повышенной анизотропией сейсмических волн и дефицит плотности около 5 %. Оценки температуры на границе ядро-мантия составляют 3800-4200 К, а на границе внутреннего ядра - 5200-5700 К. Главными кандидатами на роль легкого элемента в жидком ядре считаются Si и O. Космохимические оценки показывают, что ядро должно содержать около 2 мас. % S, а экспериментальные данные свидетельствуют, что структура внутреннего ядра согласуется со свойствами Fe-карбидов. Наиболее обоснованной на сегодняшний день является модель ядра Земли с содержаниями (мас. %): Si = 5-6, O = 0.5-1.0, S = 1.8-1.9, C ≈ 2.0, при этом во внутреннем ядре может преобладать карбид Fe 7C 3. Исследование короткоживущих изотопных систем показывает, что ядро сформировалось на ранней стадии развития Земли, предположительно не позднее 30-50 млн лет от начала формирования Солнечной системы, t 0 = 4567.2 ± 0.5 млн лет. Исследование распределения сидерофильных элементов между силикатным расплавом и расплавом Fe позволяет реконструировать процесс формирования ядра в магматическом океане, глубина которого могла достигать 1000-1500 км при температуре 3000-4000 К. В магматическом океане f O2 менялась от 4-5 до 1-2 лог. ед. ниже буфера IW. Однако данные по Mo, W, S согласуются с добавкой последних 10-15 % хондритового вещества позднее, в результате крупного ударного события. Теплофизическое моделирование энергетики ядра согласуется с общим тепловым потоком от границы ядро-мантия 7-17 ТВт. Отвод избыточного тепла осуществляется через две крупные зоны пониженных скоростей в основании суперплюмов. В геологической истории периодичность активности и географическое положение крупных зон пониженных скоростей могли меняться. Процесс отвода тепла от границы ядро-мантия определяется либо чрезмерным накоплением тепла в ядре, либо инициируется погружением холодных субдукционных плит, но, так или иначе, тесно взаимосвязан с геодинамическими процессами на поверхности. Обмен веществом с мантией был значительным на ранней истории Земли, вплоть до существования базального магматического океана. Однако после остывания мантии он составил не более 1-2 % от массы ядра, что, впрочем, достаточно для подпитки термохимических плюмов летучими компонентами.
eng: This paper provides the state-of-the-art discussion of major aspects of the composition and evolution of the Earth’s core. A comparison of experimentally derived density of Fe with seismological data shows that the outer liquid core has a homogeneous structure and a ~10% density deficit, whereas the solid inner core has a complex heterogeneous anisotropic structure and a ~5% density deficit. Recent estimates of the core-mantle boundary (CMB) and inner-core boundary temperatures are equal to 3800-4200 K and 5200-5700 K, respectively. Silicon and oxygen (up to 5-7 wt.%) are considered to be the most likely light element candidates in the liquid core. Cosmochemical estimates show that the core must contain about 2 wt.% S, and new experimental data indicate that the inner-core structure yields the best match to the properties of Fe carbides. Our best estimate of the Earth’s core calls for 5-6 wt.% Si, 0.5-1.0 wt.% O, 1.8-1.9 wt.% S, and 2.0 wt.% C, with the Fe 7C 3 carbide being the dominant phase in the inner core. The study of short-lived isotope systems shows that the core could have formed early in the Earth’s history within about 30-50 Myr after the formation of the Solar System, t 0 = 4567.2 ± 0.5 Ma. Studies on the partitioning of siderophile elements between liquid iron and silicate melt suggest that the core material would form in a magma ocean at ~1000-1500 km depths and 3000-4000 K. The oxygen fugacity for the magma ocean is estimated to vary from 4-5 to 1-2 log units below the Iron-Wustite oxygen buffer. However, the data for Mo, W, and S suggest addition of a late veneer of 10-15% of oxidized chondritic material as a result of the Moon-forming giant impact. Thermal and energetics core models agree with the estimate of a mean CMB heat flow of 7-17 TW. The excess heat is transported out of the core via two large low shear velocity zones at the base of superplumes. These zones may not be stable in their positions over geologic time and could move according to cycles of mantle plume and plate tectonics. The CMB heat fluxes are controlled either by high heat production from the core or subduction of cold slabs but in both cases are closely linked with surface geodynamic processes and plate tectonic motions. Considerable amounts of exchange may have occurred between the core and mantle early in the Earth’s history even up to the formation of a basal magma ocean. However, the extent of material exchange across the CMB upon cooling of the mantle was no greater than 1-2% of the core mass, which, however, was sufficient to supply thermochemical plumes with volatiles H, C, and S.
Ключевые слова: магматический океан; расплав; железо; высокие давления; мантия; ядро; silicates; magma ocean; melt; iron; high pressure; mantle; core; силикаты;
Издано: 2016
Физ. характеристика: с.31-62
Цитирование: 1. Бажанова З.Г., Оганов А.Р., Джанола О. Системы Fe-C и Fe-H при давлениях внутреннего ядра Земли // Успехи физических наук, 2012, т. 182, с. 521-530. 2. Добрецов Н.Л. Глобальные петрологические процессы. М., Недра, 1981, 236 с. 3. Добрецов Н.Л. Периодичность геологических процессов и глубинная геодинамика // Геология и геофизика, 1994, т. 35 (5), с. 3-19. 4. Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика, 2010, т. 51 (6), с. 761-784. 5. Добрецов Н.Л. Основы тектоники и геодинамики. Новосибирск, Изд-во Новосиб. ун-та, 2011, 492 с. 6. Добрецов Н.Л., Шацкий А.Ф. Глубинный цикл углерода и глубинная геодинамика: роль ядра и карбонатитовых расплавов в нижней мантии // Геология и геофизика, 2012, т. 53 (11), с. 1455-1475. 7. Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика. Новосибирск, Изд-во СО РАН, филиал «Гео», 2001, 408 с. 8. Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Параметры горячих точек и термохимических плюмов // Геология и геофизика, 2005, т. 46 (6), с. 589-602. 9. Добрецов Н.Л., Кулаков И.Ю., Литасов К.Д., Кукарина Е.В. Значение геологии, экспериментальной петрологии и сейсмотомографии для комплексной оценки субдукционных процессов // Геология и геофизика, 2015, т. 56 (1-2), с. 21-55. 10. Кусков О.Л., Хитаров Н.И. Термодинамика и геохимия ядра и мантии Земли. М., Наука, 1982, 279 с. 11. Литасов К.Д., Шацкий А.Ф., Овчинников С.Г., Попов З.И., Пономарев Д.С., Отани Э. Фазовые превращения нитридов железа Fe3N-Fe4N при давлении до 30 ГПа, исследованные методом in situ рентгеновской дифрактометрии // Письма в ЖЭТФ, 2013, т. 98, с. 907-911. 12. Литасов К.Д., Попов З.И., Гаврюшкин П.Н., Овчинников С.Г., Федоров А.С. Первопринципные расчеты уравнений состояния и относительной стабильности карбидов железа при давлениях ядра Земли // Геология и геофизика, 2015a, т. 56 (1-2), с. 214-223. 13. Отани Э., Мибе К., Сакамаки Т., Камада С., Такахаси С., Фукуи Х., Цуцуи С., Барон А.К.Р. Скорости звуковых волн, измеренные методом неупругого рассеяния рентгеновских лучей при высоких давлениях и температурах в алмазной ячейке с резистивным нагревом // Геология и геофизика, 2015, т. 56 (1-2), с. 247-253. 14. Попов З.И., Литасов К.Д., Гаврюшкин П.Н., Овчинников С.Г., Федоров А.С. Теоретическое исследование нитридов железа γ’-Fe4N и ε-FexN при давлениях до 500 ГПа // Письма в ЖЭТФ, 2015, т. 101, с. 405-409. 15. Соколова Т.С., Дорогокупец П.И., Литасов К.Д. Взаимосогласованные шкалы давлений на основании уравнений состояния рубина, алмаза, MgO, B2-NaCl, а также Au, Pt и других металлов до 4 Mбар и 3000 К // Геология и геофизика, 2013, т. 54 (2), с. 237-261. 16. Adler J.F., Williams Q. A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core // J. Geophys. Res.-Solid Earth, 2005, v. 110, p. B01203, doi:10.01029/02004jb003103. 17. Aitta A. Iron melting curve with a tricritical point // J. Stat. Mech.: Theory Exp., 2006, v. 12, p. P12015. 18. Albarede F. Volatile accretion history of the terrestrial planets and dynamic implications // Nature, 2009, v. 461, p. 1227-1233. 19. Alboussiere T., Deguen R., Melzani M. Melting-induced stratification above the Earth’s inner core due to convective translation // Nature, 2010, v. 466, p. 744-747. 20. Alfe D., Gillan M., Vočadlo L., Brodholt J., Price G. The ab initio simulation of the Earth’s core // Philos. Trans. R. Soc. London, Ser. A: Mathematical, Physical and Engineering Sciences, 2002a, v. 360, p. 1227-1244. 21. Alfe D., Gillan M.J., Price G.D. Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data // Earth Planet. Sci. Lett., 2002b, v. 195, p. 91-98. 22. Allegre C., Manhes G., Lewin E. Chemical composition of the Earth and the volatility control on planetary genetics // Earth Planet. Sci. Lett., 2001, v. 185, p. 49-69. 23. Amelin Y., Kaltenbach A., Iizuka T., Stirling C.H., Ireland T.R., Petaev M., Jacobsen S.B. U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U // Earth Planet. Sci. Lett., 2010, v. 300, p. 343-350. 24. Andrault D., Bolfan-Casanova N., Nigro G.L., Bouhifd M.A., Garbarino G., Mezouar M. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history // Earth Planet. Sci. Lett., 2011, v. 304, p. 251-259. 25. Antonangeli D., Ohtani E. Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models // Progress in Earth Planet. Sci., 2015, v. 2, p. 1-11. 26. Antonangeli D., Occelli F., Requardt H., Badro J., Fiquet G., Krisch M. Elastic anisotropy in textured hcp-iron to 112 GPa from sound wave propagation measurements // Earth Planet. Sci. Lett., 2004, v. 225, p. 243-251. 27. Antonangeli D., Siebert J., Badro J., Farber D.L., Fiquet G., Morard G., Ryerson F.J. Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys // Earth Planet. Sci. Lett., 2010, v. 295, p. 292-296. 28. Antonangeli D., Komabayashi T., Occelli F., Borissenko E., Walters A.C., Fiquet G., Fei Y. Simultaneous sound velocity and density measurements of hcp iron up to 93 GPa and 1100 K: An experimental test of the Birch’s law at high temperature // Earth Planet. Sci. Lett., 2012, v. 331, p. 210-214. 29. Anzellini S., Dewaele A., Mezouar M., Loubeyre P., Morard G. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction // Science, 2013, v. 340, p. 464-466. 30. Asahara Y., Kubo T., Kondo T. Phase relations of a carbonaceous chondrite at lower mantle conditions // Phys. Earth Planet. Inter., 2004, v. 143-144, p. 421-432. 31. Asanuma H., Ohtani E., Sakai T., Terasaki H., Kamada S., Hirao N., Sata N., Ohishi Y. Phase relations of Fe-Si alloy up to core conditions: Implications for the Earth inner core // Geophys. Res. Lett., 2008, v. 35, p. L12307, doi: 12310.11029/12008gl033863. 32. Asanuma H., Ohtani E., Sakai T., Terasaki H., Kamada S., Kondo T., Kikegawa T. Melting of iron-silicon alloy up to the core-mantle boundary pressure: implications to the thermal structure of the Earth’s core // Phys. Chem. Miner., 2010, v. 37, p. 353-359. 33. Asanuma H., Ohtani E., Sakai T., Terasaki H., Kamada S., Hirao N., Ohishi Y. Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: Implications for the Earth’s inner core // Earth Planet. Sci. Lett., 2011, v. 310, p. 113-118. 34. Badro J., Fiquet G., Guyot F., Gregoryanz E., Occelli F., Antonangeli D., d’Astuto M. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core // Earth Planet. Sci. Lett., 2007, v. 254, p. 233-238. 35. Badro J., Côté A.S., Brodholt J.P. A seismologically consistent compositional model of Earth’s core // Proceedings of the National Academy of Sciences, 2014, v. 111, p. 7542-7545. 36. Belonoshko A.B., Ahuja R., Johansson B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core // Nature, 2003, v. 424, p. 1032-1034. 37. Belonoshko A.B., Rosengren A., Burakovsky L., Preston D.L., Johansson B. Melting of Fe and Fe0.9375S0.0625 at Earth’s core pressures studied using ab initio molecular dynamics // Phys. Rev. B, 2009, v. 79, p. 220102. 38. Bennett N.R., Brenan J.M. Controls on the solubility of rhenium in silicate melt: Implications for the osmium isotopic composition of Earth’s mantle // Earth Planet. Sci. Lett., 2013, v. 361, p. 320-332. 39. Bennett N., Brenan J., Koga K. The solubility of platinum in silicate melt under reducing conditions: Results from experiments without metal inclusions // Geochim. Cosmochim. Acta, 2014, v. 133, p. 422-442. 40. Bergman M.I. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth’s inner core // Nature, 1997, v. 389, p. 60-63. 41. Birch F. Elasticity and constitution of the Earth’s interior // J. Geophys. Res., 1952, v. 57, p. 227-286. 42. Birch F. Density and composition of mantle and core // J. Geophys. Res., 1964, v. 69, p. 4377-4388. 43. Bouhifd M.A., Jephcoat A.P. The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study // Earth Planet. Sci. Lett., 2003, v. 209, p. 245-255. 44. Bouhifd M.A., Jephcoat A.P. Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures // Earth Planet. Sci. Lett., 2011, v. 307, p. 341-348. 45. Boujibar A., Andrault D., Bouhifd M.A., Bolfan-Casanova N., Devidal J.-L., Trcera N. Metal-silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion // Earth Planet. Sci. Lett., 2014, v. 391, p. 42-54. 46. Brenan J.M., McDonough W.F. Core formation and metal-silicate fractionation of osmium and iridium from gold // Nat. Geosci., 2009, v. 2, p. 798-801. 47. Brown J.M., McQueen R.G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa // J. Geophys. Res.: Solid Earth, 1986, v. 91, p. 7485-7494. 48. Buffett B.A., Garnero E.J., Jeanloz R. Sediments at the top of Earth’s core // Science, 2000, v. 290, p. 1338-1342. 49. Bullen K. Compressibility-pressure hypothesis and the Earth’s interior // Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 1949, v. 5. p. 335-368. 50. Busse F. A model of the geodynamo // Geophys. J. Intern., 1975, v. 42, p. 437-459. 51. Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present // Earth Planet. Sci. Lett., 2002, v. 195, p. 75-90. 52. Chabot N.L., Agee C.B. Core formation in the Earth and Moon: new experimental constraints from V, Cr, and Mn // Geochim. Cosmochim. Acta, 2003, v. 67, p. 2077-2091. 53. Chen B., Li Z., Zhang D., Liu J., Hu M.Y., Zhao J., Bi W., Alp E.E., Xiao Y., Chow P., Li J. Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3 // Proceedings of the National Academy of Sciences, 2014, v. 111, p. 17755-17758. 54. Corgne A., Wood B.J., Fei Y. C- and S-rich molten alloy immiscibility and core formation of planetesimals // Geochim. Cosmochim. Acta, 2008, v. 72, p. 2409-2416. 55. Courtillot V., Davaille A., Besse J., Stock J. Three distinct types of hotspots in the Earth’s mantle // Earth Planet. Sci. Lett., 2003, v. 205, p. 295-308. 56. de Koker N., Steinle-Neumann G., Vlček V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core // Proceedings of the National Academy of Sciences, 2012, v. 109, p. 4070-4073. 57. Decremps F., Antonangeli D., Gauthier M., Ayrinhac S., Morand M., Marchand G.L., Bergame F., Philippe J. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell // Geophys. Res. Lett., 2014, v. 41, p. 1459-1464. 58. Delano J.W. Redox history of the Earth’s interior since 3900 Ma: implications for prebiotic molecules // Origins Life Evol. Biosphere, 2001, v. 31, p. 311-341. 59. Deuss A. Heterogeneity and anisotropy of Earth’s inner core // Annual Rev. Earth Planet. Sci., 2014, v. 42, p. 103-126. 60. Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M. Quasihydrostatic equation of state of iron above 2 Mbar // Phys. Rev. Lett., 2006, v. 97, p. 215504. 61. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N. Modelling of thermochemical plumes and implications for the origin of the Siberian traps // Lithos, 2008, v. 100, p. 66-92. 62. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth Planet. Inter., 1981, v. 25, p. 297-356. 63. Ertel W., Walter M.J., Drake M.J., Sylvester P.J. Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: implications for accretion and core formation in Earth // Geochim. Cosmochim. Acta, 2006, v. 70, p. 2591-2602. 64. Fei Y., Brosh E. Experimental study and thermodynamic calculations of phase relations in the Fe-C system at high pressure // Earth Planet. Sci. Lett., 2014, v. 408, p. 155-162. 65. Fiquet G., Auzende A., Siebert J., Corgne A., Bureau H., Ozawa H., Garbarino G. Melting of peridotite to 140 gigapascals // Science, 2010, v. 329, p. 1516-1518. 66. Fischer R.A., Campbell A.J., Shofner G.A., Lord O.T., Dera P., Prakapenka V.B. Equation of state and phase diagram of FeO // Earth Planet. Sci. Lett., 2011, v. 304, p. 496-502. 67. Fischer R.A., Campbell A.J., Caracas R., Reaman D.M., Dera P., Prakapenka V.B. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth’s core // Earth Planet. Sci. Lett., 2012, v. 357, p. 268-276. 68. Fischer R.A., Campbell A.J., Caracas R., Reaman D.M., Heinz D.L., Dera P., Prakapenka V.B. Equations of state in the Fe-FeSi system at high pressures and temperatures // J. Geophys. Res.: Solid Earth, 2014, v. 119, p. 2810-2827, doi:2810.1002/2013JB010898. 69. Fischer R.A., Nakajima Y., Campbell A.J., Frost D.J., Harries D., Langenhorst F., Miyajima N., Pollok K., Rubie D.C. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O // Geochim. Cosmochim. Acta, 2015, v.167, p. 177-194. 70. Frost D.J., Mann U., Asahara Y., Rubie D.C. The redox state of the mantle during and just after core formation // Philos. Trans. R. Soc., Ser. A: Mathematical, Physical and Engineering Sciences, 2008, v. 366, p. 4315-4337. 71. Gao L., Chen B., Wang J., Alp E.E., Zhao J., Lerche M., Sturhahn W., Scott H.P., Huang F., Ding Y., Sinogeikin S.V., Lundstrom C.C., Bass J.D., Li J. Pressure-induced magnetic transition and sound velocities of Fe3C: Implications for carbon in the Earth’s inner core // Geophys. Res. Lett., 2008, v. 35, p. L17306, doi:10.11029/12008gl034817. 72. Gao L., Chen B., Zhao J., Alp E.E., Sturhahn W., Li J. Effect of temperature on sound velocities of compressed Fe3C, a candidate component of the Earth’s inner core // Earth Planet. Sci. Lett., 2011, v. 309, p. 213-220. 73. Garcia R., Souriau A. Amplitude of the core-mantle boundary topography estimated by stochastic analysis of core phases // Phys. Earth Planet. Inter., 2000, v. 117, p. 345-359. 74. Garnero E.J., Helmberger D.V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific // Geophys. Res. Lett., 1996, v. 23, p. 977-980. 75. Genda H., Abe Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans // Nature, 2005, v. 433, p. 842-844. 76. Gessmann C., Wood B. Potassium in the Earth’s core? // Earth Planet. Sci. Lett., 2002, v. 200, p. 63-78. 77. Gessmann C., Wood B., Rubie D., Kilburn M. Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth’s core // Earth Planet. Sci. Lett., 2001, v. 184, p. 367-376. 78. Gomi H., Ohta K., Hirose K., Labrosse S., Caracas R., Verstraete M.J., Hernlund J.W. The high conductivity of iron and thermal evolution of the Earth’s core // Phys. Earth Planet. Inter., 2013, v. 224, p. 88-103. 79. Gu T., Fei Y., Wu X., Qin S. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores // Earth Planet. Sci. Lett., 2014, v. 390, p. 296-303. 80. Halliday A.N. The origins of volatiles in the terrestrial planets // Geochim. Cosmochim. Acta, 2013, v. 105, p. 146-171. 81. Halliday A.N., Wood B.J., The composition and major reservoirs of the Earth around the time of the Moon-forming giant impact / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 9, p. 11-42. 82. Halliday A., Stirling C., Freedman P., Oberli F., Reynolds B., Georg R. High precision isotope ratio measurements using multiple collector inductively coupled plasma mass spectrometry // Encyclopedia of Mass Spectrometry, 2010, v. 5, p. 242-260. 83. Helffrich G., Kaneshima S. Outer-core compositional stratification from observed core wave speed profiles // Nature, 2010, v. 468, p. 807-810. 84. Herndon J.M. Substructure of the inner core of the Earth // Proceedings of the National Academy of Sciences, 1996, v. 93, p. 646-648. 85. Hernlund J.W., McNamara A.K. The core-mantle boundary region / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 7, p. 461-519. 86. Hernlund J.W., Thomas C., Tackley P.J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle // Nature, 2005, v. 434, p. 882-886. 87. Hirao N., Kondo T., Ohtani E., Takemura K., Kikegawa T. Compression of iron hydride to 80 GPa and hydrogen in the Earth’s inner core // Geophys. Res. Lett., 2004, v. 31, p. L06616, doi:10.01029/02003GL019380. 88. Hirose K., Labrosse S., Hernlund J. Composition and state of the core // Annual Rev. Earth Planet. Sci., 2013, v. 41, p. 657-691. 89. Huang H., Hu X., Jing F., Cai L., Shen Q., Gong Z., Liu H. Melting behavior of Fe-O-S at high pressure: A discussion on the melting depression induced by O and S // J. Geophys. Res.: Solid Earth, 2010, v. 115, p. B05207, doi:10.01029/02009JB006514. 90. Huang H., Fei Y., Cai L., Jing F., Hu X., Xie H., Zhang L., Gong Z. Evidence for an oxygen-depleted liquid outer core of the Earth // Nature, 2011, v. 479, p. 513-516. 91. Ichikawa H., Tsuchiya T., Tange Y. The P-V-T equation of state and thermodynamic properties of liquid iron // J. Geophys. Res.: Solid Earth, 2014, v. 119, p. 240-252. 92. Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A.N., Nagashima K., Hutcheon I.D., Palme H. 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated // Earth Planet. Sci. Lett., 2008, v. 272, p. 353-364. 93. Jones C.A. Thermal and compositional convection in the outer core / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 8, p. 115-159. 94. Kamada S., Ohtani E., Terasaki H., Sakai T., Miyahara M., Ohishi Y., Hirao N. Melting relationships in the Fe-Fe3S system up to the outer core conditions // Earth Planet. Sci. Lett., 2012, v. 359, p. 26-33. 95. Kamada S., Ohtani E., Fukui H., Sakai T., Terasaki H., Takahashi S., Shibazaki Y., Tsutsui S., Baron A.Q., Hirao N. The sound velocity measurements of Fe3S // Amer. Miner., 2014, v. 99, p. 98-101. 96. Kanda R.V.S., Stevenson D.J. Suction mechanism for iron entrainment into the lower mantle // Geophys. Res. Lett., 2006, v. 33, p. L02310, doi:10.01029/02005GL025009. 97. Kantor A.P., Kantor I.Y., Kurnosov A.V., Kuznetsov A.Y., Dubrovinskaia N.A., Krisch M., Bossak A. A., Dmitriev V.P., Urusov V.S., Dubrovinsky L.S. Sound wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering // Phys. Earth Planet. Inter., 2007, v. 164, p. 83-89. 98. Katsura T., Yoneda A., Yamazaki D., Yoshino T., Ito E. Adiabatic temperature profile in the mantle // Phys. Earth Planet. Inter., 2010, v. 183, p. 212-218. 99. Kawazoe T., Ohtani E. Reaction between liquid iron and (Mg,Fe)SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa // Phys. Chem. Miner., 2006, v. 33, p. 227-234. 100. Kleine T., Rudge J.F. Chronometry of meteorites and the formation of the Earth and Moon // Elements, 2011, v. 7, p. 41-46. 101. Kleine T., Münker C., Mezger K., Palme H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry // Nature, 2002, v. 418, p. 952-955. 102. Kleine T., Touboul M., Bourdon B., Nimmo F., Mezger K., Palme H., Jacobsen S.B., Yin Q.-Z., Halliday A.N. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets // Geochim. Cosmochim. Acta, 2009, v. 73, p. 5150-5188. 103. Komabayashi T. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core // J. Geophys. Res.: Solid Earth, 2014, v. 119, p. 4164-4177. 104. Koot L., Dumberry M. Viscosity of the Earth’s inner core: Constraints from nutation observations // Earth Planet. Sci. Lett., 2011, v. 308, p. 343-349. 105. Kuwayama Y., Sawai T., Hirose K., Sata N., Ohishi Y. Phase relations of iron-silicon alloys at high pressure and high temperature // Phys. Chem. Miner., 2009, v. 36, p. 511-518. 106. Labrosse S. Thermal and compositional stratification of the inner core // Comptes Rendus Geoscience, 2014, v. 346, p. 119-129. 107. Labrosse S. Thermal evolution of the core with a high thermal conductivity // Phys. Earth Planet. Inter., 2015, v. 247, p. 36-55. 108. Labrosse S., Hernlund J., Coltice N. A crystallizing dense magma ocean at the base of the Earth’s mantle // Nature, 2007, v. 450, p. 866-869. 109. Lay T. Deep Earth structure: lower mantle and D″ / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 1, p. 683-723. 110. Lay T., Hernlund J., Garnero E.J., Thorne M.S. A post-perovskite lens and D″ heat flux beneath the Central Pacific // Science, 2006, v. 314, p. 1272-1276. 111. Leng W., Zhong S. Controls on plume heat flux and plume excess temperature // J. Geophys. Res.: Solid Earth, 2008, v. 113, p. B04408, doi:10.01029/02007JB005155. 112. Li J., Agee C. The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: Implications for the Earth’s core formation // Geochim. Cosmochim. Acta, 2001, v. 65, p. 1821-1832. 113. Li J., Fei Y., Experimental сonstraints on сore сomposition / Eds. H.D. Holland, K.K. Turekian // Treatise on geochemistry (second edition). Elsevier, Oxford, 2014, v. 3, p. 527-557. 114. Li J., Fei Y., Mao H., Hirose K., Shieh S. Sulfur in the Earth’s inner core // Earth Planet. Sci. Lett., 2001, v. 193, p. 509-514. 115. Li Y., Dasgupta R., Tsuno K. The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles // Earth Planet. Sci. Lett., 2015, v. 415, p. 54-66. 116. Lin J.-F., Struzhkin V.V., Sturhahn W., Huang E., Zhao J., Hu M.Y., Alp E.E., Mao H.-k., Boctor N., Hemley R.J. Sound velocities of iron-nickel and iron-silicon alloys at high pressures // Geophys. Res. Lett., 2003, v. 30, p. 2112, doi:10.1029/2003GL018405. 117. Lin J.-F., Fei Y., Sturhahn W., Zhao J., Mao H.K., Hemley R.J. Magnetic transition and sound velocities of Fe3S at high pressure: implications for Earth and planetary cores // Earth Planet. Sci. Lett., 2004, v. 226, p. 33-40. 118. Lin J.F., Sturhahn W., Zhao J.Y., Shen G.Y., Mao H.K., Hemley R.J. Sound velocities of hot dense iron: Birch’s law revisited // Science, 2005, v. 308, p. 1892-1894. 119. Lin J.F., Scott H.P., Fischer R.A., Chang Y.Y., Kantor I., Prakapenka V.B. Phase relations of Fe-Si alloy in Earth’s core // Geophys. Res. Lett., 2009, v. 36, p. doi: 10.1029/2008GL036990. 120. Litasov K.D., Sharygin I.S., Dorogokupets P.I., Shatskiy A., Gavryushkin P.N., Sokolova T.S., Ohtani E., Li J., Funakoshi K. Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K // J. Geophys. Res.: Solid Earth, 2013, v. 118, p. 5274-5284. 121. Litasov K.D., Shatskiy A.F., Ohtani E. Hydrogenation of Fe-bearing compounds at 6-20 GPa // Abst. Vol. of Int. Symp. «Advances in High Pressure Research II» // Eds. K.D. Litasov., E. Ohtani. Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 2015, p. 11. 122. Lobanov S.S., Chen P.-N., Chen X.-J., Zha C.-S., Litasov K.D., Mao H.-K., Goncharov A.F. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors // Nature Communications, 2013, v. 4, doi:10.1038/ncomms3446. 123. Lodders K. Solar system abundances and condensation temperatures of the elements // Astrophys. J., 2003, v. 591, p. 1220-1247. 124. Lord O.T., Walter M.J., Dasgupta R., Walker D., Clark S.M. Melting in the Fe-C system to 70 GPa // Earth Planet. Sci. Lett., 2009, v. 284, p. 157-167. 125. Lord O., Walter M., Dobson D., Armstrong L., Clark S., Kleppe A. The FeSi phase diagram to 150 GPa // J. Geophys. Res.: Solid Earth, 2010, v. 115, p. B06208, doi:10.01029/02009JB006528. 126. Mann U., Frost D.J., Rubie D.C. Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly-siderophile elements // Geochim. Cosmochim. Acta, 2009, v. 73, p. 7360-7386. 127. Mann U., Frost D.J., Rubie D.C., Becker H., Audétat A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures - Implications for the origin of highly siderophile element concentrations in the Earth’s mantle // Geochim. Cosmochim. Acta, 2012, v. 84, p. 593-613. 128. Manthilake G.M., de Koker N., Frost D.J., McCammon C.A. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core // Proceedings of the National Academy of Sciences, 2011, v. 108, p. 17901-17904. 129. Mao W.L., Sturhahn W., Heinz D.L., Mao H.-K., Shu J., Hemley R.J. Nuclear resonant x-ray scattering of iron hydride at high pressure // Geophys. Res. Lett., 2004, v. 31, p. L15618, doi: 10.11029/12004GL020541. 130. Mao Z., Lin J.-F., Liu J., Alatas A., Gao L., Zhao J., Mao H.-K. Sound velocities of Fe and Fe-Si alloy in the Earth’s core // Proceedings of the National Academy of Sciences, 2012, v. 109, p. 10239-10244. 131. Martorell B., Vočadlo L., Brodholt J., Wood I.G. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions // Science, 2013, v. 342, p. 466-468. 132. Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth // Earth Planet. Sci. Lett., 2012, v. 313, p. 56-66. 133. Masters G., Gubbins D. On the resolution of density within the Earth // Phys. Earth Planet. Inter., 2003, v. 140, p. 159-167. 134. Mattesini M., Belonoshko A., Tkalčić H., Buforn E., Udías A., Ahuja R. Candy wrapper for the Earth’s inner core // Sci. Reports, 2013, v. 3, p. 2096, doi: 2010.1038/srep02096. 135. McDonough W.F. Compositional model for the Earth’s core / Eds. H.D. Holland, K.K. Turekian // Treatise on geochemistry (second edition). Elsevier, Oxford, 2014, v. 3, p. 559-577. 136. Minobe S., Nakajima Y., Hirose K., Ohishi Y. Stability and compressibility of a new iron-nitride 137. β-Fe7N3 to core pressures // Geophys. Res. Lett., 2015, v. 42, p. 5206-5211. 138. Monnereau M., Calvet M., Margerin L., Souriau A. Lopsided growth of Earth’s inner core // Science, 2010, v. 328, p. 1014-1017. 139. Morard G., Katsura T. Pressure-temperature cartography of Fe-S-Si immiscible system // Geochim. Cosmochim. Acta, 2010, v. 74, p. 3659-3667. 140. Morard G., Andrault D., Guignot N., Siebert J., Garbarino G., Antonangeli D. Melting of Fe-Ni-Si and Fe-Ni-S alloys at megabar pressures: implications for the core-mantle boundary temperature // Phys. Chem. Miner., 2011, v. 38, p. 767-776. 141. Morard G., Andrault D., Antonangeli D., Bouchet J. Properties of iron alloys under the Earth’s core conditions // Comptes Rendus Geoscience, 2014, v. 346, p. 130-139. 142. Murakami M., Hirose K., Kawamura K., Sata N., Ohishi Y. Post-perovskite phase transition in MgSiO3 // Science, 2004, v. 304, p. 855-858. 143. Narygina O., Dubrovinsky L.S., McCammon C.A., Kurnosov A., Kantor I.Y., Prakapenka V.B., Dubrovinskaia N.A. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core // Earth Planet. Sci. Lett., 2011, v. 307, p. 409-414. 144. Nguyen J.H., Holmes N.C. Melting of iron at the physical conditions of the Earth’s core // Nature, 2004, v. 427, p. 339-342. 145. Nimmo F. Energetics of the core / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015a, v. 8, p. 27-55. 146. Nimmo F. Thermal and compositional evolution of the core / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015b, v. 9, p. 201-219. 147. Ohta K., Cohen R.E., Hirose K., Haule K., Shimizu K., Ohishi Y. Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure // Phys. Rev. Lett., 2012, v. 108, p. 026403. 148. Ohtani E. Chemical and physical properties and thermal state of the core / Ed. S. Karato // Physics and chemistry of the deep Earth. Wiley - Blackwell, Oxford, UK, 2013. v. p. 244-270. 149. Ohtani E., Shibazaki Y., Sakai T., Mibe K., Fukui H., Kamada S., Sakamaki T., Seto Y., Tsutsui S., Baron A.Q. Sound velocity of hexagonal close-packed iron up to core pressures // Geophys. Res. Lett., 2013, v. 40, p. 5089-5094. 150. Okuchi T. Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core // Science, 1997, v. 278, p. 1781-1784. 151. Ozawa H., Hirose K., Mitome M., Bando Y., Sata N., Ohishi Y. Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core // Phys. Chem. Miner., 2009, v. 36, p. 355-363. 152. Ozawa H., Hirose K., Tateno S., Sata N., Ohishi Y. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa // Phys. Earth Planet. Inter., 2010, v. 179, p. 157-163. 153. Ozawa H., Hirose K., Ohta K., Ishii H., Hiraoka N., Ohishi Y., Seto Y. Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure // Phys. Rev. B, 2011a, v. 84, p. 134417. 154. Ozawa H., Takahashi F., Hirose K., Ohishi Y., Hirao N. Phase transition of FeO and stratification in Earth’s outer core // Science, 2011b, v. 334, p. 792-794. 155. Ozawa H., Hirose K., Suzuki T., Ohishi Y., Hirao N. Decomposition of Fe3S above 250 GPa // Geophys. Res. Lett., 2013, v. 40, p. 4845-4849. 156. Palme H., O’Neill H.S.C. Cosmochemical estimates of mantle composition / Eds. K.K. Turekian, H.D. Holland // Treatise on geochemistry (second edition). Elsevier, Oxford, 2014, v. 3, p. 1-39. 157. Poirier J.P. Light elements in the Earth’s outer core: a critical review // Phys. Earth Planet. Inter., 1994, v. 85, p. 319-337. 158. Pozzo M., Davies C., Gubbins D., Alfè D. Thermal and electrical conductivity of iron at Earth’s core conditions // Nature, 2012, v. 485, p. 355-358. 159. Pozzo M., Davies C., Gubbins D., Alfè D. Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions // Phys. Rev. B, 2013, v. 87, p. 014110. 160. Prescher C., Dubrovinsky L., Bykova E., Kupenko I., Glazyrin K., Kantor A., McCammon C., Mookherjee M., Nakajima Y., Miyajima N. High Poisson’s ratio of Earth’s inner core explained by carbon alloying // Nature Geosci., 2015, v. 8, p. 220-223. 161. Ricolleau A., Fei Y., Corgne A., Siebert J., Badro J. Oxygen and silicon contents of Earth’s core from high pressure metal-silicate partitioning experiments // Earth Planet. Sci. Lett., 2011, v. 310, p. 409-421. 162. Righter K. Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth // Earth Planet. Sci. Lett., 2011, v. 304, p. 158-167. 163. Righter K. Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles // Amer. Miner., 2015, v. 100, p. 1098-1109. 164. Righter K., Danielson L., Drake M.J., Domanik K. Partition coefficients at high pressure and temperature / Eds. K.K. Turekian, H.D. Holland // Treatise on geochemistry (second edition). Elsevier, Oxford, 2014, v. 3, p. 449-477. 165. Rohrbach A., Ghosh S., Schmidt M.W., Wijbrans C.H., Klemme S. The stability of Fe-Ni carbides in the Earth’s mantle: Evidence for a low Fe-Ni-C melt fraction in the deep mantle // Earth Planet. Sci. Lett., 2014, v. 388, p. 211-221. 166. Rost S., Revenaugh J. Seismic detection of rigid zones at the top of the core // Science, 2001, v. 294, p. 1911-1914. 167. Rubie D.C., Frost D.J., Mann U., Asahara Y., Nimmo F., Tsuno K., Kegler P., Holzheid A., Palme H. Heterogeneous accretion, composition and core-mantle differentiation of the Earth // Earth Planet. Sci. Lett., 2011, v. 301, p. 31-42. 168. Rubie D.C., Nimmo F., Melosh H.J. Formation of the Earth’s core / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 9, p. 43-79. 169. Sakai T., Kondo T., Ohtani E., Terasaki H., Endo N., Kuba T., Suzuki T., Kikegawa T. Interaction between iron and post-perovskite at core-mantle boundary and core signature in plume source region // Geophys. Res. Lett., 2006, v. 33, p. L15317, doi:10.11029/12006GL026868. 170. Sakamaki K., Takahashi E., Nakajima Y., Nishihara Y., Funakoshi K., Suzuki T., Fukai Y. Melting phase relation of FeHx up to 20 GPa: Implication for the temperature of the Earth’s core // Phys. Earth Planet. Inter., 2009, v. 174, p. 192-201. 171. San-Martin A., Manchester F. The Fe-H (iron-hydrogen) system // Bull. Alloy Phase Diagrams, 1990, v. 11, p. 173-184. 172. Savage P.S., Armytage R.M., Georg R.B., Halliday A.N. High temperature silicon isotope geochemistry // Lithos, 2014, v. 190, p. 500-519. 173. Seagle C.T., Cottrell E., Fei Y., Hummer D.R., Prakapenka V.B. Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure // Geophys. Res. Lett., 2013, v. 40, p. 5377-5381. 174. Shahar A., Hillgren V.J., Young E.D., Fei Y., Macris C.A., Deng L. High-temperature Si isotope fractionation between iron metal and silicate // Geochim. Cosmochim. Acta, 2011, v. 75, p. 7688-7697. 175. Shibazaki Y., Ohtani E., Terasaki H., Tateyama R., Sakamaki T., Tsuchiya T., Funakoshi K. Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede // Earth Planet. Sci. Lett., 2011, v. 301, p. 153-158. 176. Shibazaki Y., Ohtani E., Fukui H., Sakai T., Kamada S., Ishikawa D., Tsutsui S., Baron A.Q., Nishitani N., Hirao N. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth’s core // Earth Planet. Sci. Lett., 2012, v. 313, p. 79-85. 177. Sidorin I., Gurnis M., Helmberger D.V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle // Science, 1999, v. 286, p. 1326-1331. 178. Siebert J., Badro J., Antonangeli D., Ryerson F.J. Metal-silicate partitioning of Ni and Co in a deep magma ocean // Earth Planet. Sci. Lett., 2012, v. 321-322, p. 189-197. 179. Siebert J., Badro J., Antonangeli D., Ryerson F.J. Terrestrial accretion under oxidizing conditions // Science, 2013, v. 339, p. 1194-1197. 180. Singh S., Taylor M., Montagner J. On the presence of liquid in Earth’s inner core // Science, 2000, v. 287, p. 2471-2474. 181. Song X., Helmberger D.V. Anisotropy of Earth’s inner core // Geophys. Res. Lett., 1993, v. 20, p. 2591-2594. 182. Song X., Helmberger D.V. A P wave velocity model of Earth’s core // J. Geophys. Res. B, 1995, v. 100, p. 9817-9830. 183. Souriau A., Calvet M. Deep earth structure: The Earth’s cores / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 1, p. 725-757. 184. Stacey F.D., Anderson O.L. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions // Phys. Earth Planet. Inter., 2001, v. 124, p. 153-162. 185. Stewart A.J., Schmidt M.W., van Westrenen W., Liebske C. Mars: A new core-crystallization regime // Science, 2007, v. 316, p. 1323-1325. 186. Tackley P.J. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects // Earth Sci. Rev., 2012, v. 110, p. 1-25. 187. Takafuji N., Hirose K., Mitome M., Bando Y. Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core // Geophys. Res. Lett., 2005, v. 32, p. L06313, doi:10.01029/02005GL022773. 188. Takahashi S., Ohtani E., Sakai T., Mashino I., Kamada S., Miyahara M., Sakamaki T., Hirao N., Ohishi Y. Stability and melting relations of Fe3C up to 3 Mbar: Implication for the carbon in the Earth’s inner core // Abst. American Geophysical Union Fall Meeting, 2013, MR11B-05. 189. Tateno S., Hirose K., Ohishi Y., Tatsumi Y. The structure of iron in Earth’s inner core // Science, 2010, v. 330, p. 359-361. 190. Tateno S., Kuwayama Y., Hirose K., Ohishi Y. The structure of Fe-Si alloy in Earth’s inner core // Earth Planet. Sci. Lett., 2015, v. 418, p. 11-19. 191. Terasaki H., Kamada S., Sakai T., Ohtani E., Hirao N., Ohishi Y. Liquidus and solidus temperatures of a Fe-O-S alloy up to the pressures of the outer core: Implication for the thermal structure of the Earth’s core // Earth Planet. Sci. Lett., 2011a, v. 304, p. 559-564. 192. Terasaki H., Shibazaki Y., Sakamaki T., Tateyama R., Ohtani E., Funakoshi K., Higo Y. Hydrogenation of FeSi under high pressure // Amer. Miner., 2011b, v. 96, p. 93-99. 193. Terasaki H., Ohtani E., Sakai T., Kamada S., Asanuma H., Shibazaki Y., Hirao N., Sata N., Ohishi Y., Sakamaki T. Stability of Fe-Ni hydride after the reaction between Fe-Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit // Phys. Earth Planet. Inter., 2012, v. 194, p. 18-24. 194. Terasaki H., Shibazaki Y., Nishida K., Tateyama R., Takahashi S., Ishii M., Shimoyama Y., Ohtani E., Funakoshi K., Higo Y. Repulsive nature for hydrogen incorporation to Fe3C up to 14 GPa // ISIJ International, 2014, v. 54, p. 2637-2642. 195. Tolstikhin I., Hofmann A.W. Early crust on top of the Earth’s core // Phys. Earth Planet. Inter., 2005, v. 148, p. 109-130. 196. Treatise on geophysics / Ed. G. Schubert. Elsevier, 11 volumes, 2015. 197. Tsuno K., Ohtani E. Eutectic temperatures and melting relations in the Fe-O-S system at high pressures and temperatures // Phys. Chem. Miner., 2009, v. 36, p. 9-17. 198. Tsuno K., Frost D.J., Rubie D.C. Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation // Geophys. Res. Lett., 2013, v. 40, p. 66-71. 199. Vočadlo L. Earth’s core: iron and iron alloys / Ed. G. Schubert // Treatise on geophysics (second edition). Elsevier, Oxford, 2015, v. 2, p. 117-147. 200. Vočadlo L., Dobson D.P., Wood I.G. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure // Earth Planet. Sci. Lett., 2009, v. 288, p. 534-538. 201. Wade J., Wood B.J., Tuff J. Metal-silicate partitioning of Mo and W at high pressures and temperatures: Evidence for late accretion of sulphur to the Earth // Geochim. Cosmochim. Acta, 2012, v. 85, p. 58-74. 202. Wang T., Song X., Xia H.H. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda // Nature Geosci., 2015, v. 8, p. 224-227. 203. Wood B.J., Halliday A.N. The lead isotopic age of the Earth can be explained by core formation alone // Nature, 2010, v. 465, p. 767-770. 204. Wood B.J., Walter M.J., Wade J. Accretion of the Earth and segregation of its core // Nature, 2006, v. 441, p. 825-833. 205. Wood B.J., Wade J., Kilburn M.R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning // Geochim. Cosmochim. Acta, 2008, v. 72, p. 1415-1426. 206. Wood B.J., Kiseeva E.S., Mirolo F.J. Accretion and core formation: The effects of sulfur on metal-silicate partition coefficients // Geochim. Cosmochim. Acta, 2014, v. 145, p. 248-267. 207. Yin Q., Jacobsen S., Yamashita K., Blichert-Toft J., Télouk P., Albarede F. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites // Nature, 2002, v. 418, p. 949-952. 208. Yoshida S., Sumita I., Kumazawa M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy // J. Geophys. Res.: Solid Earth, 1996, v. 101, p. 28085-28103. 209. Zhang W.-J., Liu Z.-Y., Liu Z.-L., Cai L.-C. Melting curves and entropy of melting of iron under Earth’s core conditions // Phys. Earth Planet. Inter., 2015, v. 244, p. 69-77. 210. Zhang Y., Yin Q.-Z. Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics // Proceedings of the National Academy of Sciences, 2012, v. 109, p. 19579-19583. 211. Zhu L., Liu H., Pickard C.J., Zou G., Ma Y. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core // Nature Chemistry, 2014, v. 6, p. 644-648.