Инд. авторы: Sukhorukov V.P., Polyansky O.P., Krylov A.A., Zinoviev S.V.
Заглавие: Reconstruction of the metamorphic P–T path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai
Библ. ссылка: Sukhorukov V.P., Polyansky O.P., Krylov A.A., Zinoviev S.V. Reconstruction of the metamorphic P–T path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai // Petrology. - 2016. - Vol.24. - Iss. 4. - P.409-432. - ISSN 0869-5911. - EISSN 1556-2085.
Внешние системы: DOI: 10.1134/S0869591116040068; РИНЦ: 27018985; SCOPUS: 2-s2.0-84978371897; WoS: 000379865600005;
Реферат: eng: The paper presents original authors’ data on aluminous schists in the Tsogt tectonic plate in the Southern Altai Metamorphic Belt. The nappe includes a medium-temperature/medium-pressure zonal metamorphic complex, whose metamorphic grade varies from the greenschist to epidote-amphibolite facies. The garnet and garnet–staurolite schists contain three garnet generations of different composition and morphology. The P–T metamorphic parameters estimated by mineralogical geothermometers and geobarometers and by numerical modeling with the PERPLEX 668 software provide evidence of two successive metamorphic episodes: high-gradient (of the andalusite–sillimanite type, geothermal gradient approximately 40–50°/km) and low-gradient (kyanite–sillimanite type, geothermal gradient approximately 27°/km). The P-T parameters of the older episode are T = 545–575°C and P = 3.1–3.7 kbar. Metamorphism during the younger episode was zonal, and its peak parameters were T = 560–565°C, P = 6.4–7.2 kbar for the garnet zone and T = 585–615°C, P = 7.1–7.8 kbar for the staurolite zone. The metamorphism evolved according to a clockwise P–T path: the pressure increased during the first episode at a practically constant temperature, and then during the second episode, the temperature increased at a nearly constant pressure. Such trends are typical of metamorphism related to collisional tectonic settings and may be explained by crustal thickening due to overthrusting. The regional crustal thickening reached at least 15–18 km. © 2016, Pleiades Publishing, Ltd.
Издано: 2016
Физ. характеристика: с.409-432
Цитирование: 1. Aranovich, L.Ya., Mineral’nye ravnovesiya mnogokomponentnykh tverdykh rastvorov (Mineral Equilibria of Multicomponent Solid Solutions), Moscow: Nauka, 1991. 2. Ayres, M. and Vance, D., A comparative study of diffusion profiles in Himalayan and Dalradian garnets: constraints on diffusion data and the relative duration of the metamorphic events, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 66–80. 3. Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for Phanerozoic crustal growth of central Asia, J. Asian Earth Sci., 2002, vol. 21, pp. 87–110. 4. Bibikova, E.V., Kirnozova, T.I., Kozakov, I.K., et al., Polymetamorphic complexes of the southern slope of Mongolian Altai: results of U-Pb dating, Geotektonika, 1992, no. 2, pp. 104–112. 5. Burenjargal, U., Okamoto, A., and Meguro, Y., An exhumation pressure–temperature path and fluid activities during metamorphism in the Tseel terrane, SWMongolia: constraints from aluminosilicate-bearing quartz veins and garnet zonings in metapelites, J. Asian Earth Sci., 2012, vol. 54–55, pp. 214–229. 6. Burenjargal, U., Okamoto, A., Kuwatani, T., et al., Thermal evolution of the Tseel terrane, SWMongolia and its relation to granitoid intrusions in the central Asian Orogenic Belt, J. Metamorph. Geol., 2014, vol. 32, pp. 765–790. 7. Burg, J.-P. and Gerya, T., The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the central Alps, J. Metamorph. Geol., 2005, vol. 23, pp. 75–95. 8. Caddick, M., Konopasek, J., and Thompson, A.B., Preservation of garnet growth zoning and the duration of prograde metamorphism, J. Petrol., 2010, vol. 51, pp. 2327–2347. 9. Caddick, M.J. and Kohn, M.J., Garnet: witness to the evolution of destructive plate boundaries, Elements, 2013, vol. 9, pp. 427–432. 10. Carlson, W.D., The significance of intergranular diffusion to the mechanism and kinetics of porphyroblast crystallization, Contrib. Mineral. Petrol., 1989, vol. 103, pp. 1–24. 11. Carlson, W.D., Scales of disequilibrium and rates of equilibrium during metamorphism, Am. Mineral., 2001, vol. 87, pp. 185–200. 12. Chakraborty, S. and Ganguly, J., Cation diffusion in aluminosilicate garnets: experimental determination in spessartine–almandine diffusion couples, evaluation of effective binary, diffusion coefficients, and applications, Contrib. Mineral. Petrol., 1992, vol. 111, pp. 74–86. 13. Chatterjee, N.D. and Johannes, W.S., Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2Al3Si3O10(OH)2, Contrib. Mineral. Petrol., 1974, vol. 48, pp. 89–114. 14. Connolly, J.A.D., Multivariable phase diagrams: an algorithm based on generalized thermodynamics, Am. J. Sci., 1990, vol. 290, pp. 666–718. 15. Connolly, J.A.D., The geodynamic equation of state: what and how, Geochem., Geophys., Geosyst., 2009, vol. 10, p. 10. 16. Didenko, A.N., Mossakovskii, A.A., Pecherskii, D.M., et al., Geodynamics of the Paleozoic oceans in Central Asia, Geol. Geofiz., 1994, vol. 35, nos. 7–8, pp. 59–75. 17. Dohmen, R. and Chakraborty, S., Mechanism and kinetics of element and isotopic exchange mediated by a fluid phase, Am. Mineral., 2003, vol. 88, pp. 1251–1270. 18. England, P.C. and Thompson, A.B., Pressure temperature time paths of regional metamorphism 1. Heat transfer during the evolution of regions of thickened continental crust, J. Petrol., 1984, vol. 25, pp. 894–928. 19. Evans, T.P., A method for calculating effective bulk composition modification due to crystal fractionation in garnetbearing schist: implications for isopleth thermobarometry, J. Metamorph. Geol., 2004, vol. 22, pp. 547–557. 20. Florence, F.P. and Spear, F.S., Effects of diffusional modification of garnet growth zoning on P–t path calculations, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 487–500. 21. Gerya, T.V., Perchuk, L.L., van Reenen, D.D., and Smit, C.A., Two-dimensional numerical modeling of pressure–temperature–time paths for the exhumation of some granulite facies terrains in the Precambrian, J. Geodynam., 2000, vol. 29, pp. 17–35. 22. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or log date, J. Sed. Petrol., 1988, vol. 58, pp. 820–829. 23. Holdaway, M.J., Application of new experimental and garnet Margules data to the garnet–biotite geothermometer, Am. Mineral., 2000, vol. 85, pp. 881–889. 24. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343. 25. Jamieson, R.A., Beaumont, C., Nguyen, M.H., and Lee, B., Interaction of metamorphism, deformation, and exhumation in large convergent orogens, J. Metamorph. Geol., 2002, vol. 20, pp. 9–24. 26. Jiang, Y., Sun, M., Kröner, A., et al., The high-grade Tseel terrane in SWMongolia: an Early Paleozoic arc system or a Precambrian sliver?, Lithos, 2012, vol. 142–143, pp. 95–115. 27. Kim, H.S. and Bell, T.H., Combining compositional zoning and foliation intersection axes (FIAs) in garnet to quantitatively determine early P–T–t paths in multiply deformed and metamorphosed schists: north central Massachusetts, USA, Contrib. Mineral. Petrol., 2005, vol. 149, pp. 141–163. 28. Kohn, M.J., Geochemical zoning in metamorphic minerals, in Treatise on Geochemistry. Vol. 3. The Crust, Rudnick, R., Ed., Oxford: Elsevier–Pergamon, 2005, vol. 3, pp. 229–261. 29. Kozakov, I.K., Dokembriiskie infrastrukturnye kompleksy Mongolii (Precambrian Infrastructural Complexes in Mongolia), Leningrad: Nauka, 1986. 30. Kozakov, I.K., Kovach, V.P., Bibikova, E.V., et al., Age and sources of granitoids in the junction zone of the Caledonides and Hercynides in southwestern Mongolia: geodynamic implications, Petrology, 2007, vol. 15, no. 2, pp. 126–150. 31. Kozakov, I.K., Didienko, A.N., Azimov, P.Ya., et al., Geodynamic settings and formation conditions of crystalline complexes in the South Altai and South Gobi metamorphic belts, Geotectonics, 2011, vol. 45, no. 3, pp. 174–194. 32. Kröner, A., Windley, B.F., Badarch, G., et al., Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian–Nubian shield, in 4-D Framework of Continental Crust, Hatcher, R.D., Carlson, M.P., McBride, J.H., Martínez Cátalan J.R., Eds., Geol. Soc. Am. Mem. 2007, vol. 200, pp. 181–209. 33. Le Breton, N. and Thompson, A.B., Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 226–237. 34. Li, P., Sun, M., Rosenbaum, G., et al., Structural evolution of the Irtysh shear zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt, J. Struct. Geol., 2015. doi 10.1016/j.jsg.2015.08.008 35. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., et al., Three metamorphic events in the Precambrian P–T–t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites, Petrology, 2013, vol. 21, no. 6, pp. 561–578. 36. Menard, T. and Spear, F.S., Metamorphism of calcic pelitic schists, Strafford Dome, Vermont: compositional zoning and reaction history, J. Petrol., 1993, vol. 34, pp. 977–1005. 37. Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Fold Belt: geodynamic evolution and history of formation, Geotektonika, 1993, no. 6, pp. 3–32. 38. Nakano, N., Osanai, Y., Satish-Kumar, M., et al., Paleozoic subduction–accretion–closure histories in the West Mongolian segment of the Paleo-Asian ocean: evidence from pressure–temperature–time–protolith evolution of high-Mg and -Al gneisses in the Altai mountains, J. Geol., 2014, vol. 122, pp. 283–308. 39. Nakano, N., Osanai, Y., Owada, M., et al., Multiple growth of garnet, sillimanite/kyanite and monazite during amphibolite facies metamorphism: implications for the P–T–t and tectonic evolution of the western Altai Range, Mongolia, J. Metamorph. Geol., 2015, vol. 33, no. 9, pp. 909–1046. 40. Newton, R.C., Charlu, T.V., and Kleppa, O.J., Thermochemistry of the high structural state plagioclases, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 933–941. 41. Pattison, D.R.M., Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scot. J. Geol., 1992, vol. 100, pp. 423–446. 42. Pattison, D.R.M., Instability of Al2SiO5 “triple point” assemblages in muscovite + biotite + quartz-bearing metapelites, with implications, Am. Mineral., 2001, vol. 86, pp. 1414–1422. 43. Perchuk, L.L., Aranovich, L.Ya., Podlesskii, K.K., et al., Precambrian granulites of the Aldan Shield, eastern Siberia, USSR, J. Metamorph. Geol., 1985, vol. 3, pp. 265–310. 44. Polyansky, O.P., Sukhorukov, V.P., Travin, A.V., et al., Tectonic interpretation of the thermochronological data and P-T conditions of rock metamorphism in the Bodonchin Zone complex (Mongolian Altai), Russ. Geol. Geophys., 2011, vol. 52, no. 9, pp. 991–1006. 45. Polyansky, O.P., Babichev, A.V., Sukhorukov, V.P., et al., A thermotectonic numerical model of collisional metamorphism in the Mongolian Altai, Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1–5. 46. Ruzhentsev, S.V. and Pospelov, I.I., South-Mongolian Variscan fold system, Geotektonika, 1992, no. 5, pp. 45–62. 47. Schmalholz, S.M. and Podladchikov, Y.Y., Tectonic overpressure in weak crustal–scale shear zones and implications for the exhumation of high-pressure rocks, Geophys. Res. Lett., 2013, vol. 40, pp. 1984–1988. doi 10.1002/grl.50417 48. Selverstone, J., Petrological constraints on imbrication, metamorphism and uplift in the SWTauern Window, Eastern Alps, Tectonics, 1985, vol. 4, pp. 687–704. 49. Sengör, A.M.C., Natal’in, B.A., and Burtman, V.S., Evolution of the Altaid tectonic collage and Paleozoic crustal grows in Eurasia, Nature, 1993, vol. 34, no. 6435, pp. 299–307. 50. Spear, F.S., Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths, Mineral. Soc. Am. Monogr, Washington: Book Crafters, 1993. 51. Stowell, H.H., Taylor, D.L., Tinkham, D.L., et al., Contact metamorphic P–T–t paths from Sm–Nd garnet ages, phase equilibria modelling and thermobarometry: garnet ledge, south-eastern Alaska, USA, J. Metamorph. Geol., 2001, vol. 19, pp. 645–660. 52. Sukhorukov, V.P., Composition and conditions of formation of andalusite-kyanite-sillimanite pegmatoid segregations in metamorphic rocks of the Tsel Block, Mongolian Altay, Russ. Geol. Geophys., 2007, vol. 48, no. 6, pp. 617–622. 53. Tajcmanova, L., Connolly, J.A.D., and Cesare, B., Thermodynamic model for titanium and ferric iron solution in biotite, J. Metamorph. Geol., 2009, vol. 27, pp. 153–165. 54. Tomurtogoo, O., A new tectonic scheme of the Paleozoic in Mongolia, Mongol. Geoscient., 1997, vol. 3, pp. 12–17. 55. Warren, C.J., Beaumont, C., and Jamieson, R.A., Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision, Earth Planet. Sci. Lett., 2008, vol. 267, pp. 129–145. 56. Werner, C.D., Saxonian granulites—a contribution to the geochemical diagnosis of original rocks in high-metamorphic complexes, Cerlands Beitr. Geophys., 1987, vol. 96, pp. 271–290. 57. Windley, B.F., Alexeiev, D., Xiao, W.J., et al., Tectonic models for accretion of the Central Asian Orogenic Belt, J. Geol. Soc., 2007, vol. 164, pp. 31–47. 58. Wu, C.M., Zhang, J., and Ren, L.D., Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium to high-grade metapelites, J. Petrol., 2004, vol. 45, no. 9, pp. 1907–1921. 59. Xiao, W., Windley, B.F., Badarch, G., et al., Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia, J. Geol. Soc. London, 2004, vol. 161, pp. 339–342. 60. Zeh, A., Millar, I.L., and Horstwood, M.S.A., Polymetamorphism in the NEShackleton Range, Antarctica: constraints from petrology and U-Pb, Sm-Nd, Rb-Sr TIMS and in-situ U-Pb LA-PIMMS dating, J. Petrol., 2004, vol. 45, pp. 949–973.