Инд. авторы: Seryotkin Y.V.
Заглавие: High-pressure behavior of HEU-type zeolites: X-ray diffraction study of clinoptilolite-Na
Библ. ссылка: Seryotkin Y.V. High-pressure behavior of HEU-type zeolites: X-ray diffraction study of clinoptilolite-Na // Microporous and Mesoporous Materials. - 2016. - Vol.235. - P.20-31. - ISSN 1387-1811. - EISSN 1873-3093.
Внешние системы: DOI: 10.1016/j.micromeso.2016.07.048; РИНЦ: 27143083; SCOPUS: 2-s2.0-84982682939; WoS: 000383937100003;
Реферат: eng: Clinoptilolite-Na, Na2.55Ca1.67K0.37(H2O)21.5[Al6.21Si29.79O72], with the space group C2/m, a = 17.6229(4), b = 17.9957(3), c = 7.39625(15) Å, β = 116.353(3)°, V = 2101.85(7) Å3, and Z = 1 has been studied by single-crystal X-ray diffraction method in normal conditions as well as under compression in penetrating (water-containing) and non-penetrating (paraffin) media. When compressing in water medium, clinoptilolite is subjected to the additional hydration at the starting stage unlike the structurally similar heulandite with persistent increasing the content of H2O over the wide pressure range. This occurs owing to the additional population of partially vacant positions. With further increasing the pressure, H2O molecules are redistributed in the extraframework subsystem saving the total number. Both literature and our data on compression of zeolites of the isomorphous heulandite-clinoptilolite series in non-penetrating media evidence that the compressibility along the coordinate directions noticeably differs from sample to sample including differences in the direction of the largest compression. This is evidently associated with variations in the zeolite composition. © 2016 Elsevier Inc.
Ключевые слова: Zeolites; X-ray diffraction studies; Single crystal X-ray diffraction method; Pressure ranges; Normal condition; High-pressure behavior; High pressure; Heulandite; Clinoptilolites; X ray diffraction; Sodium; Silicon wafers; Hydration; High pressure effects; Data compression; Crystal structure; Zeolite; Hydration; High pressure; Heulandite; Crystal structure; Clinoptilolite; Single crystals;
Издано: 2016
Физ. характеристика: с.20-31
Цитирование: 1. [1] Gottardi, G., Galli, E., Natural Zeolites. 1985, Springer-Verlag, Berlin. 2. [2] Godelitsas, A., Armbruster, T., Microporous Mesoporous Mater 61 (2003), 3–24. 3. [3] Mason, B., Sand, L.B., Am. Mineral. 45 (1960), 341–350. 4. [4] Hawkings, D.B., Contr. Mineral. Petrol 45 (1974), 27–36. 5. [5] Mumpton, F.A., Am. Mineral. 45 (1960), 351–369. 6. [6] Alietti, A., Am. Mineral. 57 (1972), 1448–1462. 7. [7] Boles, J.R., Am. Mineral. 57 (1972), 1463–1493. 8. [8] Filizova, L.D., et al. Compt. Rend. Acad. Bulg. Sci. 25 (1972), 1081–1084. 9. [9] Alietti, A., Brigatti, M.F., Poppi, L., J. Mineral. Monatsh, 1977, 493–501. 10. [10] Valueva, G.P., Russ. Geol. Geophys. 35 (1994), 1–4. 11. [11] Coombs, D.S., et al. Can. Mineral. 35 (1997), 1571–1606. 12. [12] Bish, D.L., Boak, J.M., Bish, D.L., Ming, D.W., (eds.) Natural Zeolites: Occurrence, Properties, Applications, 45, 2001, 207–216 Mineral. Soc. Am. Rev. Mineral. Geochem. 13. [13] Alietti, A., Gottardi, G., Poppi, L., Tschermaks Min. Petr. Mitt 21 (1974), 291–298. 14. [14] Alberti, A., Vezzalini, G., Tschermaks Min. Petr. Mitt 31 (1983), 259–270. 15. [15] Bish, D.L., Eur. J. Mineral. 2 (1990), 771–777. 16. [16] Armbruster, T., Gunter, M.E., Am. Mineral. 76 (1991), 1872–1883. 17. [17] Armbruster, T., Am. Mineral. 78 (1993), 260–264. 18. [18] Seretkin, YuV., Bakakin, I.V., Bakakin, V.V., Russ. Geol. Geophys. 41 (2000), 1554–1557. 19. [19] Bish, D.L., Carey, J.W., Bish, D.L., Ming, D.W., (eds.) Natural Zeolites: Occurrence, Properties, Applications, 45, 2001, 403–452 Mineral. Soc. Am. Rev. Mineral. Geochem. 20. [20] Langella, A., et al. Clays Clay Min. 51 (2003), 625–633. 21. [21] Comodi, P., Gatta, G.D., Zanazzi, P.F., Eur. J. Mineral. 13 (2001), 497–505. 22. [22] Seryotkin, YuV., Microporous Mesoporous Mater. 214 (2015), 127–135. 23. [23] Gatta, G.D., Lee, Y., Mineral. Mag. 78 (2014), 267–291. 24. [24] Belitsky, I.A., et al. Phys. Chem. Miner. 18 (1992), 497–505. 25. [25] Seryotkin, YuV., et al. Eur. J. Mineral. 17 (2005), 305–313. 26. [26] Lee, Y., et al. J. Am. Chem. Soc. 124 (2002), 5466–5475. 27. [27] Seryotkin, YuV., Bakakin, V.V., Eur. J. Mineral. 19 (2007), 593–598. 28. [28] Lee, Y., Hriljac, J.A., Parise, J.B., Vogt, T., Am. Mineral. 91 (2006), 247–251. 29. [29] Sheldrick, G., Acta Crystallogr. Sect. A Found. Crystallogr. A64 (2008), 112–122. 30. [30] Koyama, K., Takeuchi, Y., Z. Kristal. 145 (1977), 216–239. 31. [31] Boehler, R., Rev. Sci. Instrum., 77, 2006, 115103. 32. [32] Piermarini, G.J., et al. J. Appl. Phys. 46 (1975), 2774–2780. 33. [33] Angel, R.J., J. Appl. Crystallogr. 37 (2004), 486–492. 34. [34] Lotti, P., Gatta, G.D., Merlini, M., Liermann, H.-P., Z. Krist. 230 (2015), 201–211. 35. [35] Angel, R.J., Gonzalez-Platas, J., Alvaro, M., Z. Krist. 229 (2014), 405–419.