Инд. авторы: Razvorotneva L.I, Boguslavskii A.E., Markovich T.I.
Заглавие: Geochemical aspects of environmentally safe conservation of liquid radioactive waste
Библ. ссылка: Razvorotneva L.I, Boguslavskii A.E., Markovich T.I. Geochemical aspects of environmentally safe conservation of liquid radioactive waste // Radiochemistry. - 2016. - Vol.58. - Iss. 3. - P.317-322. - ISSN 1066-3622. - EISSN 1608-3288.
Внешние системы: DOI: 10.1134/S1066362216030152; РИНЦ: 27140014; WoS: 000408938000015;
Реферат: eng: Physicochemical features of the sorption of Sr, Cs, and U radionuclides on natural mineral sorbents (montmorillonites of Na and Ca type, kaolinites, illites) were studied. The main processes responsible for binding and retention of radionuclides are ion exchange and formation of complexes on the mineral surface. The influence of pH, salt composition of the solution, specific surface area of the sorbent, and its pore size on the radionuclide immobilization efficiency was examined.
Ключевые слова: Uranyl ion; Radionuclide sorption; clay minerals; radioactive waste disposal; pore space;
Издано: 2016
Физ. характеристика: с.317-322
Цитирование: 1. Kovalev, V.P., Mel’gunov, S.V., Puzankov, Yu.V., et al., Predotvrashchenie neupravlyaemogo rasprostraneniya radionuklidov v okruzhayushchuyu sredu (geokhimicheskie bar’ery na smektitovoi osnove) (Prevention of Uncontrolled Release of Radionuclides into the Environment (Geochemical Barriers Based on Smectite)), Novosibirsk Sibirskoe Otdel. Ross. Akad. Nauk, 1996. 2. Push, R., Clay Miner., 1992, vol. 27, pp. 353–361. 3. Pchikmin, A.A., Kuznetsov, C.V., and Shmariovich, E.M., Lithol. Miner. Resources, 1984, vol. 16, pp. 364–373. 4. Ohnuki, T., J. Miner. Soc. Jpn., 1995, vol. 24, pp. 23–27. 5. Moore, S.M. and Shackelford, C.D., in Proc. Tailing and Mine Waste 2011, Vancouver, Nov. 6–9, 2011. 6. Wang, X.K., Chen, C.I., Zhou, X., et al., Radiochim. Acta, 2005, vol. 93, no. 5, pp. 273–278. 7. Kampos, B., Aguilar-Carillo, J., and Algarra, M., Appl. Clay Sci., 2013, vol. 85, pp. 53–63. 8. Balley, S.W., Clay Clay Miner., 1984, vol. 32, pp. 81–92. 9. Borden, D. and Giese, R., Clay Clay Miner., 2001, vol. 49, pp. 444–446. 10. Crisholm-Brause, C.J., Berg, J.M., Matzner, R.A., and Morris, D.E., J. Colloid Interface Sci., 2001, vol. 233, pp. 38–49. 11. Greatehouse, J.A., Stellalevinsohn, H.R., Denecke, M., et al., Clay Clay Miner., 2005, vol. 53, pp. 278–295. 12. Adeleye, S.A., Clay, P.G., and Oladiro, M.O.A., J. Mater. Sci., 1994, vol. 29, pp. 954–958. 13. Lu, N. and Mason, C.F.V., Appl. Geochem., 2001, vol. 16, pp. 1653–1662. 14. Sandino, A. and Bruno, J., Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 4135–4145. 15. McKinley, J.P., Zachara, J.M., and Smith, S.C., Clay Clay Miner., 1995, vol. 43, no. 5, pp. 586–598. 16. Turner, G.D., Zachara, J.M., McKinley, J.P., and Smith, S.C., Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3399–3414.