Инд. авторы: Novikova S., Sokol E., Khvorov P.
Заглавие: Multiple combustion metamorphic events in the goose lake coal basin, transbaikalia, russia: first dating results
Библ. ссылка: Novikova S., Sokol E., Khvorov P. Multiple combustion metamorphic events in the goose lake coal basin, transbaikalia, russia: first dating results // Quaternary Geochronology. - 2016. - Vol.36. - P.38-54. - ISSN 1871-1014. - EISSN 1878-0350.
Внешние системы: DOI: 10.1016/j.quageo.2016.08.001; РИНЦ: 27142802; SCOPUS: 2-s2.0-84982263713; WoS: 000385605000004;
Реферат: eng: Combustion metamorphic (CM) rocks (clinker and paralava) occur in abundance in the eastern and southern margins of the Goose Lake in Western Transbaikalia and form five fields. The sections we studied in natural outcrops exposed in numerous gullies and in quarries comprise the full range of CM varieties from low-grade to fused paralavas and clinkers. The tridymite-plagioclase-cordierite and tridymite-cordierite paralava and clinker have medium to high K/Ca ratios (∼2.5–4.5 wt.%) with K restricted to K-rich (∼4–6 wt.% K2O) high-silica glass, making the bulk samples suitable for 40Ar/39Ar dating. Regional-scale combustion metamorphic events were triggered by reactivation of faults in the Goose Lake Basin causing repeated erosion of gently dipping coal-bearing sediments that exposed coal beds to oxidation resulting in their spontaneous ignition. Geological evidence indicates that the earliest natural coal fire and formation of CM rocks occurred at the end of the Early Cretaceous. Geological and preliminary geochronological data indicate that large-scale coal fires occurred in the Early Pleistocene (no later than 1.8 ± 0.4 Ma ago) and in Late Pleistocene (0.02 ± 0.01 Ma and 0.03 ± 0.03 Ma).
Ключевые слова: Neotectonic activity; mineralogy; Goose Lake Coal Basin; Coal fires; 40Ar/39Ar-ages; transbaikalia;
Издано: 2016
Физ. характеристика: с.38-54
Цитирование: 1. Andryushchenko, S.V., Vorontsov, A.A., Yarmolyuk, V.V., Sandimirov, I.V., Evolution of jurassic–cretaceous magmatism in the Khambin volcanotectonic complex (western Transbaikalia). Russ. Geol. Geophys. 51 (2010), 734–749. 2. Baksi, A.K., Archibald, D.A., Farrar, E., Intercalibration of 40Ar/39Ar dating standards. Chem. Geol. 129 (1996), 307–324. 3. Beerling, D., The Emerald Planet: How Plants Changed Earth's History. 2007, Oxford University press 312 pp. 4. Bulnaev, K.B., formation of transbaikalian-type depressions. Tikhookeanskaya Geol. 24 (2006), 18–30 (in Russian). 5. Carroll, M.R., Stolper, E.M., Argon solubility and diffusion in silica glass: implications for the solution behavior of molecular gases. Geochimica Cosmochimica Acta 55 (1991), 211–225. 6. Carroll, M.R., Stolper, E.M., Noble gas solubilities in silicate and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochimica Cosmochimica Acta 57 (1993), 5039–5051. 7. Chamorro-Perez, E., Gillet, P., Jambon, A., Badro, J., McMillan, P., Low argon solubility in silicates melts at high pressure. Nature 393 (1998), 352–355. 8. Chernyshev, I.V., Lebedev, V.A., Bubnov, S.N., Arakelyants, M.M., Gol'tsman, Yu.V., Isotopic geochronology of quaternary volcanic eruptions in the greater caucasus. Geokhimiya 11 (2002), 1–16. 9. Chernyshev, I.V., Lebedev, V.A., Arakelyants, M.M., K–Ar dating of quaternary volcanics: methodology and interpretation of results. Petrology 14 (2006), 62–80. 10. Cosca, M.A., Essene, E.J., Geissman, J.W., Simmons, W.B., Coates, D.A., Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am. Mineralogist 74 (1989), 85–100. 11. Cox, R., Lower, D.R., Cullers, R.L., The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwestern United States. Geochimica Cosmochimica Acta 59 (1995), 2919–2940. 12. Datsko, E.K., Geology of coal deposits and black shales in the USSR. Coal Basin and Deposits of Transbaikalia, Yakutia, Russian Far East, Sakhalin Island, and Arctic Ocean Islands. Volume 9. Coal Basin and Deposits of Transbaikalia (Buryatia, Chita Region, Russian Far East (Amur Region, Khabarovsk Area, Primorsky Region), and Sakhalin Island, Book 1, 1973, Nedra, Moskva 691 pp (in Russian). 13. Faure, G., Principles of Isotope Geology. 1986, Wiley 589 pp. 14. Fleck, R.J., Sutter, J.F., Elliot, D.H., Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica Cosmochimica Acta 41 (1977), 15–32. 15. Florencov, N.A., On the problem of mountain building in Inner Asia. Geotectonics 4 (1965), 3–14 (in Russian). 16. Florencov, N.A., Larina, V.A., The Gusinoye Ozero Coal Deposit. Transactions, East Siberian Geological Trust, Issue 13, Sverdlovsk-m ONTI. 1937 102 pp (in Russian). 17. Foit, F.F., Hooper, R.L., Rosenberg, P.E., An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. Am. Mineralogist 72 (1987), 137–147. 18. Grapes, R., Pyrometamorphism. second ed., 2011, Springer, Germany 377 pp. 19. Grapes, R., Pyrometamorphism. 2006, Springer, Germany 276 pp. 20. Grapes, R., Korzhova, S., Sokol, E., Seryotkin, Y., Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia. Contribution Mineralogy Petrology 162 (2011), 253–273. 21. Grapes, R., Zhang, K., Peng, Z., Paralava and clinker products of coal combustion, yellow river, Shanxi province, China. Lithos 113 (2009), 831–843. 22. Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A., McWilliams, M., 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem. Geol. 122 (1995), 171–184. 23. Harnois, L., The CIW index: a new chemical index of weathering. Sediment. Geol. 55 (1988), 319–322. 24. Heffern, E.L., Coates, D.A., Geological history of natural coal-bed fires, Powder River basin, USA. Int. J. Coal Geol. 59 (2004), 25–47. 25. Heffern, E.L., Reiners, P.W., Naeser, C.W., Coates, D.A., Geochronology of clinker and implications for evolution of the Powder River Basin landscape, Wyoming and Montana. (Chapter 10) Stracher, G.B., (eds.) Geology of Coal Fires: Case Studies from Around the World, 2007, Geological Society of America Reviews in Engineering Geology, 155–175. 26. International Chronostratigraphic Chart, International Commission on Stratigraphy. 2015. 27. Lee, J.Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim, J.S., A redetermination of the isotopic abundances of atmospheric Ar. Geochimica Cosmochimica Acta 70 (2006), 4507–4512. 28. Lunina, O.V., Gladkov, A.S., Fault–block structure and state of stress in the earth's crust of the Gusinoozersky Basin and the adjacent territory, Western Transbaikal Region. Geotectonics 43 (2009), 67–84. 29. Matsumoto, A., Kobayashi, T., K-Ar age determination of late Quaternary volcanic rocks using the “mass fractionation correction procedure”: application to the Younger Ontake Volcano, central Japan. Chem. Geol. 125 (1995), 123–135. 30. Nesbitt, H.W., Yong, G.M., Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Cosmochimica Acta 48 (1984), 1523–1534. 31. Nikolaeva, I.V., Palesskii, S.V., Koz'menko, O.A., Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma–mass spectrometry (ICP-MS). Geochem. Int. 46 (2008), 1016–1022. 32. Novikov, I.S., Sokol, E.V., Metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrol. Sin. 23 (2007), 1–12. 33. Novikov, I.S., Sokol, E.V., Travin, A.V., Novikova, S.A., Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition). Russ. Geol. Geophys. 49 (2008), 378–396. 34. Novikova, S.A., Sokol, E.V., Novikov, I.S., Travin, A.V., Ancient coal fires on the south-west periphery of Kuznetsk basin, West Siberia, Russia: geology and geochronology. (Chapter 19) Stracher, G.B., Prakash, A., Sokol, E.V., (eds.) Coal and Peat Fires: a Global Perspective. Volume 3: Case Studies – Coal Fires, 2015, Elsevier Science, Amsterdam, 509–543. 35. Ochirov, TsO., Geology of the Gusinoye-ivolgino Area of Buryatia. 1964, Buriatckoe Knizhnoe Izd., Ulan-Ude 154 pp (in Russian). 36. Phedorin, M.A., Bobrov, V.A., Chebykin, E.P., Goldberg, E.L., Melgunov, M.S., Filippova, S.V., Zolotarev, K.V., Comparison of synchrotron radiation X-ray fluorescence with conventional techniques for the analysis of sedimentary samples. Geostand. Geoanalytical Res. 24 (2000), 205–216. 37. Piepjohn, K., Estrada, S., Reinhardt, L., Andruleit, H., Origin of iron-oxide and silicate melt rocks in paleogene sediments of southern Ellesmere island, Canadian Arctic Archipelago, Nunavut. Can. J. Earth Sci. 44 (2007), 1005–1013. 38. Radziminovich, N.A., Gileva, N.A., Melnikova, V.I., Ochkovskaya, M.G., Seismicity of the Baikal rift system from regional network observations. J. Asian Earth Sci. 62 (2013), 146–161. 39. Rezanov, I.N., Cenozoic Sediments and Geomorphic Structure of Eastern Baikal Region. 1988, Nauka, Novosibirsk 128 pp (in Russian). 40. Renne, P.R., Deino, A.L., Hames, W.E., Heizler, M.T., Hemminge, S.R., Hodges, K.V., Koppers, A.A.P., Mark, D.F., Morgan, L.E., Phillips, D., Singer, B.S., Turrin, B.D., Villa, I.M., Villeneuve, M., Wijbrans, J.R., Data reporting norms for 40Ar/39Ar geochronology. Quat. Geochronol. 4 (2009), 346–352. 41. Sagaluev, D.D., Geological Map of the USSR. Scale 1:200 000. Western Transbaikalian Series. Sheet: M-48-XI. 1962, Gosgeoltekhizdat, Moscow (in Russian). 42. Samoilov, V.S., Yarmolyuk, V.V., Continental rifting: type, magmatism, geodynamics. Geotectonika 1 (1992), 3–20 (in Russian). 43. Sharygin, V.V., Sokol, E.V., Belakovskii, D.I., Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russ. Geol. Geophys. 50 (2009), 703–721. 44. Sharygin, V.V., Sokol, E.V., Belakovsky, D.I., Mineralogy and origin of fayalite–sekaninaite paralava: ravat coal fire, Central Tajikistan. (Chapter 22) Stracher, G.B., Sokol, E.V., Prakash, A., (eds.) Coal and Peat Fires: a Global Perspective, vol. 3, 2015, Elsevier, Amsterdam, 581–607. 45. Shatsky, V.S., Sitnikova, E.S., Koz'menko, O.A., Palessky, S.V., Nikolaeva, I.V., Zayachkovsky, A.A., Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 47 (2006), 482–496. 46. Singer, B.S., Wijbrans, J.R., Nelson, S.T., Pringle, M.S., Feeley, T.C., Dungan, M.A., Inherited argon in a Pleistocene andesite lava: 40Ar/39Ar incremental-heating and laser fusion analyses of plagioclase. Geology 26 (1998), 427–430. 47. Skoblo, V.M., Lyamina, N.A., Luzina, I.V., The Continental Upper Mesozoic in the Baikal and Transbaikal Regions. 2001, SO RAN, Novosibirsk 332 pp (in Russian). 48. Sokol, E.V., Sharygin, V.V., Kalugin, V.M., Volkova, N.I., Nigmatulina, E.N., Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals. Russia. Eur. J. Mineral. 14 (2002), 795–807. 49. Sokol, E.V., Kudinov, E.V., Kiriltseva, N.A., Korzhova, S.A., Geological prerequisites of late Cenozoic coal fires in the Kuznetsk coal basin, West Siberia, Russia. Drebenstedt, C., Fischer, Ch, Meyer, U., Jianjun, Wu, Bing, K., (eds.) Proceedings of “ICCFR 2 Second International Conference on Coal Fire Research, 2010, Germany, Institute of Mining and special civil engineering, Berlin, 86–92. 50. Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V., Kalugin, V.M., Combustion Metamorphism. Izd. 2005, SO RAN, Novosibirsk 284 pp (in Russian). 51. Sokol, E.V., Novikova, S.A., Alekseev, D.V., Travin, A.V., Natural coal fires in the Kuznetsk Coal Basin: geologic causes, climate, and age. Russ. Geol. Geophys. 55 (2014), 1043–1064. 52. Sokol, E.V., Volkova, N.I., Combustion metamorphic events resulting from natural coal fires, Chapter. Stracher, G.B., (eds.) Geology of Coal Fires: Case Studies from Around the World, 2007, Geological Society of America Reviews in Engineering Geology, 110–129. 53. Steiger, R.H., Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36 (1977), 359–362. 54. Stracher, G.B., Geology of Coal Fires: Case Studies from Around the World. 2007, Colorado Geological Society of America Reviews in Engineering Geology, Boulder 283 pp. 55. Stracher, G.B., Prakash, A., Sokol, E.V., Coal and Peat Fires: a Global Perspective. Photographs and Multimedia Tours, vol. 2, 2013, Elsevier, Amsterdam 584 pp. 56. Stracher, G.B., Prakash, A., Sokol, E.V., Coal and Peat Fires: a Global Perspective. Case Studies – Coal Fires, vol. 3, 2015, Elsevier, Amsterdam 786 pp. 57. Travin, A.V., Geochronological Stages in the Evolution of Copper-molybdenum Porphyry Deposits (Magmatic-ore Systems), South Siberia and Mongolia. PhD thesis, 1994 154 pp (in Russian). 58. Tsekhovsky, Yu.G., Sedimentogenesis and volcanosedimentary formations in the mesozoic–cenozoic continental rift depressions of the baikal region and southern Mongolia. Lithol. Mineral. Recourses 48 (2013), 138–174. 59. Tsekhovsky, YuG., Yapaskurt, O.V., Gusev, I.M., Plain fan formations in the jurassic-cretaceous grabens of the western Transbaikal region. Lithol. Mineral. Recourses 6 (2005), 612–626. 60. Tugovik, G.I., Natural Burnet Rocks of Buryatia and Possibility of Their Implication in Construction. 1979, Buryat publishing house, Ulan-Ude 61 pp (in Russian). 61. Usov, M.A., Tectonics of the Kuznetsk coal basin. Probl. Sov. Geol. 5 (1935), 113–134 (in Russian). 62. Yavorsky, V.I., Radugina, L.V., Coal fires in the Kuznetsk coal basin and related phenomena. Gorn. Zhurnal 10 (1932), 55–59 (in Russian). 63. Žáček, V., Skála, R., Dvořák, Z., Petrologie a mineralogie porcelanitů mostecké pánve – produktů fosilních požárů neogénní nědouhelné sloje. Bull. Mineral.-petrol. Odd. Nár. Muz. (Praha) 18/1 (2010), 1–32. 64. Zhang, X., Kroonenberg, S.B., Boer, C.B., Dating of coal fires in Xinjiang, north-west China. Terra Nova 16 (2004), 68–74.