Инд. авторы: Safonova I., Krivonogov S., Maruyama S., Kojima S., Komiya T., Koshida K.
Заглавие: Recognizing oib and morb in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology and geochemistry
Библ. ссылка: Safonova I., Krivonogov S., Maruyama S., Kojima S., Komiya T., Koshida K. Recognizing oib and morb in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology and geochemistry // Gondwana Research. - 2016. - Vol.33. - P.92-114. - ISSN 1342-937X. - EISSN 1878-0571.
Внешние системы: DOI: 10.1016/j.gr.2015.06.013; РИНЦ: 26761320; SCOPUS: 2-s2.0-84939147314; WoS: 000384702800006;
Реферат: eng: We present a new approach for recognizing the origin of accreted basaltic rocks based on ocean plate stratigraphy (OPS), and on the petrology and geochemistry of basalts from mid-oceanic ridges (MORB) and oceanic islands (OIB) using examples from four accretionary complexes (AC) in SW Japan: Akiyoshi, Mino-Tamba, Chichibu and Shimanto. The key to the problem is the model of OPS, which includes an association of igneous and sedimentary rocks that form on an oceanic plate during its travel from a mid-oceanic ridge to a subduction zone. We propose the reconstruction of the tectonic settings of basalts according to their relationships with associated OPS sediments, their petrogenesis and their geochemical features. Five types of OPS are recognized in the accretionary complexes of SW Japan: (1) sandstone/shale; (2) sandstone/shale and chert; (3) sandstone/shale, chert and MORB; (4) sandstone/shale, chert, MORB and gabbro (±peridotite); (5) seamount OPS including OIB, cap carbonates, slope clastics and basal shale/chert. The alkaline, tholeiitic or calc-alkaline composition of basaltic melts, which are typical of oceanic islands, mid-oceanic ridges and island-arcs, respectively, can be identified by the sequence in crystallization of their major phenocrysts, i.e. olivine (ol), clinopyroxene (cpx) and plagioclase (pl), and by their compositions. Alkaline and calc-alkaline mafic lavas are characterized by an ol → cpx → pl succession, whereas tholeiitic melts by their ol → pl ± cpx succession. Titanium-rich minerals, e.g., Ti-augite, kaersutite, Ti-biotite, are typical of alkaline lavas. The application of geochemistry-based tectonic discrimination diagrams is also a powerful tool, if not supported by geological and petrological data, may result in confusion due to magma contamination, post-magmatic alteration, and secular change of mantle thermal conditions. We propose that a direct comparison of normalized multi-element patterns and key binary plots from older volcanic rocks with their modern analogues provides a more viable and reliable method of basalt discrimination. Our OPS-petrology-geochemistry method allows us to confirm the above conclusions that the lavas of the Akiyoshi, Mino-Tamba and Southern Chichibu AC formed in oceanic islands, because they are associated with seamount OPS sediments, crystallized from ol to cpx and pl, contain Ti-augite and kaersutite and are enriched in TiO2, LREE and Nb. In this paper we present geochemical data from the Inuyama basalts of the Mino-Tamba AC and from the Toba complex in the huge Mikabu greenstone belt of the Chichibu AC. The Inuyama basalts are in contact with Jurassic pelagic cherts, but their geochemical features are confusing; they contain phenocrysts of ol, Ti-augite and kaersutite and therefore probably formed in seamounts. The Toba volcanic rocks are a part of the huge ophiolite belt; they have flat to slightly LREE-enriched REE patterns, are characterized by an ol → cpx succession of phenocrysts and they plot in the OIB field in binary plots suggesting they formed in an oceanic plateau.
Ключевые слова: Shimanto AC; Sequence in crystallization of phenocrysts; Mino-Tamba AC-Inuyama area; Chichibu AC-Mikabu belt; Akiyoshi seamount; SW Japan;
Издано: 2016
Физ. характеристика: с.92-114
Цитирование: 1. Abbott D., Burgess L., Longhi J., Smith W.H.F. An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research 1994, 99:835-850. 2. Agata T. The Asama igneous complex, central Japan: an ultramafic-mafic layered intrusion in the Mikabu greenstone belt, Sambagawa metamorphic terrain. Lithos 1994, 33:241-263. 3. Bally A.W. Thoughts on the tectonics of folded belts. Thrust and Nappe Tectonics 1981, 13-32. Blackwells, London. N.J. Price (Ed.). 4. Boulin J. Hercynian and Eocimmerian events in Afghanistan and adjoining regions. Tectonophysics 1988, 148:253-278. 5. Dong Y.-P., Zhou M.-F., Zhang G.-W., Zhou D.-W., Liu L., Zhang Q. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Sciences 2008, 32:325-335. 6. Echeveria L.M. Oceanic basaltic magmas in accretionary prisms: the Franciscan intrusive gabbros. American Journal of Science 1980, 280:697-724. 7. Garzanti E., Gaetani M. Unroofing history of late Paleozoic magmatic arcs within the "Turan plate" (Tuarkyr, Turkmenistan). Sedimentary Geology 2002, 151:67-87. 8. Gordienko I.V., Medvedev A.Ya., Gornova M.A., Tomurtogoo O., Goneger T.A. The Haraa Gol terrane in the western Hentiyn Mountains (northern Mongolia): geochemistry, geochronology, and geodynamics. Russian Geology and Geophysics 2012, 53:281-292. 9. Green D.H., Ringwood A.E. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 1967, 15:103-190. 10. Gulick S.P.S., Bangs N.L.B., Shipley T.H., Nakamura Y., Moore G., Kuramoto S. Three-dimensional architecture of the Nankai accretionary prism's imbricate thrust zone off Cape Muroto, Japan: prism reconstruction via en echelon thrust propagation. Journal of Geophysical Research 2004, 109:B02105. 11. Guo A., Zhang G.W., Sun Y.G., Zheng J.K., Liu Y., Wang J.Q. Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone: evidence of Majixueshan ancient ridge-centered hotspot. Science in China Series D-Earth Sciences 2007, 50:197-208. 12. Hamamoto R., Sakai H. Rb-Sr age of granophyre associated with the Muroto-misaki gabbroic complex. Kyusyu University, Memoirs of the Faculty of Science 1987, 15:131-135. (in Japanese). 13. Hori R. Radiolarian biostratigraphy at the Triassic/Jurassic period Boundary in bedded cherts from the Inuyama Area, Central Japan. Journal of Geosciences 1992, 35:53-65. 14. Hori N., Wakita K. Reconstructed oceanic plate stratigraphy of the Ino Formation in the Ino District, Kochi Prefecture, Central Shikoku, Japan. Journal of Asian Earth Sciences 2004, 24:185-197. 15. Humphris S.E. The mobility of the rare earth elements in the crust. Rare Earth Element Geochemistry 1984, 317-342. Elsevier, Amsterdam. P. Henderson (Ed.). 16. Humphris S.E., Thompston G. Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta 1978, 42:107-125. 17. Ichiyama Y., Ishiwatari A., Hirahara Y., Shuto K. Geochemical and isotopic constraints on the genesis of the Permian ferropicritic rocks from the Mino-Tamba belt, SW Japan. Lithos 2006, 89:47-65. 18. Ichiyama Y., Ishiwatari A., Koizumi K. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: evidence for an accreted Permian oceanic plateau. Lithos 2008, 100:127-146. 19. Ichiyama Y., Ishiwatari A., Kimura J.-I., Senda R., Miyamoto T. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy and Petrology 2014, 168:1019. 20. Ienaga M., McNeill L.C., Mikada H., Saito S., Goldberg D., Casey Moore J. Borehole image analysis of the Nankai Accretionary Wedge, ODP Leg 196: structural and stress studies. Tectonophysics 2006, 426:207-220. 21. Ishizuka H., Miyake M., Takeda N. Origin and metamorphism of greenstones from the Sambosan unit of the Southern Chichibu belt, west to central east Shikoku. Journal of the Geological Society of Japan 2003, 109:267-279. (in Japanese with English abstract). 22. Isozaki Y. Contrasting two types of orogens in Permo-Triassic Japan: accretionary versus collisional. Island Arc 1997, 6:2-24. 23. Isozaki Y. Memories of pre-Jurassic lost oceans: how to retrieve from extant lands. Geoscience Canada 2014, 41:283-311. 24. Isozaki Y., Blake M.C. Biostratigraphic constraints on formation and timing of accretion in a subduction complex: an example from the Franciscan complex in northern California. Journal of Geology 1994, 102:283-296. 25. Isozaki Y., Maruyama S. Studies on orogeny based on plate tectonics in Japan and new geotectonic subdivision of the Japanese Islands. Journal of Geography 1991, 100:697-761. (in Japanese with English abstract and captions). 26. Isozaki Y., Maruyama Sh., Fukuoka F. Accreted oceanic materials in Japan. Tectonophysics 1990, 181:179-205. 27. Isozaki Y., Aoki K., Nakama T., Yanai S. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research 2010, 18:82-105. 28. Jensen L.S. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division Mines Misc 1976, 66. 29. Jian P., Kröner A., Windley B.F., Shi Y., Zhang F., Miao L., Tomurhuu D., Zhang W., Liu D. Zircon ages of the Bayankhongor ophiolite mélange and associated rocks: time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia. Precambrian Research 2010, 177:162-180. 30. Kanmera K., Sano H. Collisional collapse and accretion of late Paleozoic Akiyoshi seamount. Episodes 1991, 14:217-223. 31. Kanmera K., Sano H., Isozaki Y. Akiyoshi terrane. Pre-Cretaceous Terranes of Japan. Publication of IGCP Project: Pre-Jurassic Evolution of Eastern Asia No. 224, Osaka 1990, 49-62. K. Ichikawa, S. Mizutani, I. Hara, S. Hada, A. Yao (Eds.). 32. Kato K., Saka Y. New model for the Early Cretaceous development of SW Japan based on basic rocks of the Chichibu composite terrane. Geoscience Journal 2006, 10:275-289. 33. Kennedy W.Q. Trends of differentiation in basaltic magmas. American Journal of Science, 5th Ser. 1933, 25:239-256. 34. Kimura G., Mukai A. Underplated units in an accretionary complex - mélange of the Shimanto belt of eastern Shikoku, Southwest Japan. Tectonics 1991, 10:31-50. 35. Kinoshita M., Tobin H., Ashi J., Kimura G., Lallement S., Screaton E.J., Curewitz D., Masago H., Moe K.T. Expedition 316 Site C0004. Proc. IODP 314/315/316 2009, The Expedition 314/315/316 Scientists, Integrated Ocean Drilling Program Management International. 36. Koizumi K., Ishiwatari A. Oceanic plateau accretion inferred from Late Paleozoic greenstones in the Jurassic Tamba accretionary complex, southwest Japan. Island Arc 2006, 15:58-83. 37. Kojima S., Sano H. Permian and Triassic submarine landslide deposits in a Jurassic accretionary complex in central Japan. Advances in Natural and Technological Hazards Research 2011, 31:639-648. Springer. Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, M. Strasser (Eds.). 38. Kojima S., Kemkin I.V., Kametaka M., Ando A. A correlation of accretionary complexes of southern Sikhote-Alin of Russia and the Inner zone of southern Japan. Geoscience Journal 2000, 4:175-185. 39. Kojima S., Hayasaka Y., Hiroi Y., Matsuoka A., Sano H., Sugamori Y., Suzuki N., Takemura A., Tsujimori T., Uchino T. Older accretionary complexes. Geology of Japan 2015, Geological Society, London, (in press). T. Moreno, S. Wallis, W. Gibbons, T. Kojima (Eds.). 40. Komiya T., Maruyama Sh., Hirata T., Nohda S. Petrology and Geochemistry of MORB and OIB in the Mid-Archean North Pole region, Pilbara craton, Western Australia: implications for the composition and temperature of the upper mantle at 3.5 Ga. International Geology Review 2002, 44:988-1016. 41. Komiya T., Maruyama Sh., Hirata T., Yurimoto H., Nohda S. Geochemistry of the oldest MORB and OIB in the Isua supracrustal belt, Southern West Greenland: implication for the composition and temperature of early Archean upper mantle. The Island Arc 2004, 13:47-72. 42. Korenaga J. Archean Geodynamics and Environments. Geophysical Monograph Series 2006, 164:7-32. 43. Kuramoto S., Taira A., Bangs N.L., Shipley T.H., Moore G.F. Seismogenic zone in the Nankai accretionary wedge general summary of Japan - U.S. collaborative 3-D seismic investigation. Journal of Geography 2000, 109:531-539. 44. Kuramoto S., Ashi J., Greinert J., Gulick S., Ishimura T., Morita S., Nakamura K., Okada M., Okamoto T., Rickert D., Saito S., Suess E., Tsunogai U., Tomosugi T. Surface observations of subduction related mud volcanoes and large thrust sheets in the Nankai Subduction Margin; report on YK00-10 and YK01-04 cruises. JAMSTEC Journal of Deep Sea Research 2001, 19. 45. Kusky T., Windley B., Safonova I., Wakita K., Wakabayashi J., Polat A., Santosh., M. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Research 2013, 24:501-547. 46. Kuzmichev A.B., Kröner A., Hegner E., Dunyi L., Yusheng W. The Shishkhid ophiolite, northern Mongolia: a key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Research 2005, 138:125-150. 47. Le Maitre R.W. Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences. Subcommission of the Systematics of Igneous Rocks 2002, Cambridge University Press. A. Streckeisen, B. Zanettin, M.J. Le Bas, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, S. Efremova, J. Keller, J. Lamere, P.A. Sabine, R. Schmid, H. Sorensen, A.R. Woolley (Eds.). 48. Litasov K.D. Physicochemical conditions for melting in the Earth's mantle containing a C-O-H fluid (from experimental data). Russian Geology and Geophysics 2011, 52:475-492. 49. Mahoney J.J., Duncan R.A., Tejada M.L.G., Sager W.W., Bralower T.J. Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise. Geology 2005, 33:185-188. 50. Maruyama S., Liou J.G., Terabayashi M. Blueschists and eclogites of the world, and their exhumation. International Geology Review 1996, 38:485-594. 51. Maruyama Sh., Isozaki Yu., Kimura G., Terabayashi M. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 1997, 6:121-142. 52. Maruyama S., Okamoto K. Water transportation from the subducting slab into the mantle transition zone. Gondwana Research 2007, 11:148-165. 53. Maruyama S., Kawai T., Windley B.F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK. Geological Society, London, Special Publications 2010, 338:55-75. 54. Maruyama S., Omori S., Sensu H., Kawai K., Windley B.F. Pacific-type orogens: new concepts and variations in space and time from present to past. Journal of Geography 2011, 120:115-223. (in Japanese with English abstract and captions). 55. Matsuda T., Isozaki Y. Well-documented travel history of Mesozoic pelagic chert in Japan: remote ocean to subduction zone. Tectonics 1991, 10:475-499. 56. Matsuda T., lsozaki Y., Yao A. Mode of occurrence of Triassic-Jurassic rocks in the lnuyama area, Mino belt, Southwest Japan. Proceeding of the Kansai Branch of the Geological Society of Japan 1981, 88:5. (in Japanese). 57. Matsuoka A. Jurassic-Early Cretaceous tectonic evolution of the Southern Chichibu terrane, southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 1992, 96:71-88. 58. McKenzie D., Richter F.M. Parameterized thermal convection in a layered region and the thermal history of the Earth. Journal of Geophysical Research, Solid Earth 1981, 86:11667-11680. 59. Meschede M. A method of discriminating between different types of mid-oceanic ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 1986, 56:207-218. 60. Miao L., Fan W., Liu D., Zhang F., Shi Yu., Gu F. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China. Journal of Asian Earth Sciences 2008, 32:348-370. 61. Miyake Y. MORB-like tholeiites formed within the Miocene forearc basin, Southwest Japan. Lithos 1985, 18:23-34. 62. Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters 1973, 19:218-224. 63. Miyashiro A. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology 1978, 66:91-104. 64. Mizoguchi S., Kiminami K., Imaoka T., Kamei A. Miocene near-trench magmatism in the Cape Muroto area, Shikoku, SW Japan. Journal of the Geological Society of Japan 2009, 115(17-30):223. (in Japanese with English abstract and captions). 65. Moghadam H.S., Li X.H., Ling X.X., Stern R.J., Khedr M.Z., Chiaradia M., Ghorbani G., Arai S., Tamur A. Devonian to Permian evolution of the Paleo-Tethys Ocean: new evidence from U-Pb zircon dating and Sr-Nd-Pb isotopes of the Darrehanjir-Mashhad "ophiolites", NE Iran. Gondwana Research 2015, 28:781-799. 66. Mongush A.A., Lebedev V.I., Travin A.V., Yarmolyuk V.V. Ophiolites of Western Tyva as fragments of a Late Vendian island arc of the Paleoasian Ocean. Doklady Earth Sciences 2011, 438:866-872. 67. Mullen E.D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 1983, 62:53-62. 68. Nakae S. Regional correlation of the Jurassic accretionary complex in the inner zone of Southwest Japan. Memories of Geological Society of Japan 2000, 55:73-98. (in Japanese with English abstract). 69. Nakagawa M., Santosh M., Maruyama S. Distribution and mineral assemblages of bedded manganese deposits in Shikoku, Southwest Japan: implications for accretion tectonics. Gondwana Research 2009, 16:609-621. 70. Nakamura Y. Petrology of the Toba ultramafic complex, Mie Prefecture, Central Japan. Journal of the Faculty of Science, University of Tokyo 1971, 18:1-51. 71. Nakayama I. On the mafic to ultramafic rocks of the Sambagawa zone in the Eastern Shikoku and the Western Kii Peninsula. Part 2. The Western Kii Peninsula with special reference to the relation between the formation of the Sambagawa zone and intrusive rocks in the Eastern Shikoku and the Western Kii Peninsula. Earth Sciences 1983, 37:312-328. (in Japanese with English abstract). 72. Nisbet E.G., Cheadle M.J., Arndt N.T., Bickle M.J. Constraining the potential temperature of the Archean mantle: a review of the evidence from komatiites. Lithos 1993, 30:291-307. 73. Nishimura Y., Hase A., Okimura Y., Kuwata M. PaIeozoic greenstones in and around Taishaku-dai, Chugoku district, Southwest Japan. Journal of the Geological Society of Japan 1979, 85:413-426. (in Japanese with English abstract). 74. Onoue T., Nishizono Y. Jurassic accretionary complex and trench-slope deposits in western Kyushu, Japan. Journal of the Geological Society of Japan 2014, 120:1-17. (in Japanese). 75. Onoue T., Sano H. Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan. Island Arc 2007, 16:173-190. 76. Onoue T., Nagai K., Kamishima A., Seno M., Sano H. Origin of basalts from Sambosan accretionary complex, Shikoku and Kyushu. Journal of the Geological Society of Japan 2004, 110:222-236. (in Japanese with English abstract). 77. Ozawa H., Murata M., Nishimura H., Itaya T. Petrological feature and dating of igneous rocks of the Mikabu belt. Journal of the Volcanological Society of Japan 1997, 42:231-237. (in Japanese with English abstract). 78. Ozawa H., Motoyama S., Inoue S., Kato Y., Murata M. Petrology of basic volcanics of the Mikabu greenstone complex in the eastern Shikoku. The Memoirs of the Geological Society of Japan 1999, 52:217-228. (in Japanese with English abstract). S. Miyashita (Ed.). 79. Pearce J.A. Trace element characteristics of lavas from destructive plate boundaries. Andesites: Orogenic Andesites and Related Rocks 1982, 525-548. John Wiley & Sons, Chichester, U.K. R.S. Thorpe (Ed.). 80. Pearce J.A., Cann Y.R. Tectonic setting of basic volcanic rocks determining using trace element analyses. Earth and Planetary Science Letters 1973, 19:220-300. 81. Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 1979, 69:33-47. 82. Pearce J.A., Nigel B., Harris W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 1984, 25:956-983. 83. Pfänder J.A., Jochum K.P., Kozakov I., Kröner A., Todt W. Coupled evolution of back-arc and island arc-like mafic crust in the late-Neoproterozoic Agardagh Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr-Nd-Pb isotope data. Contributions to Mineralogy and Petrology 2002, 143:154-174. 84. Polat A., Kerrich R., Wyman D. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research 1999, 94:139-173. 85. Regelous M., Hofmann A.W. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism since 85 Ma. Eos, Transactions American Geophysical Union 1999, 80:F1102. 86. Rollinson H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation 1992, Longman Group UK Ltd. 87. Safonova I., Maruyama S. Asia: a frontier for a future supercontinent Amasia. International Geology Review 2014, 59:1051-1071. 10.1080/00206814.2014.915586. 88. Safonova I., Santosh., M. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research 2014, 25:126-158. 89. Safonova I.Yu., Simonov V.A., Buslov M.M., Ota T., Maruyama Sh. Neoproterozoic basalts of the Paleo-Asian Ocean (Kurai accretion zone, Gorny Altai, Russia): geochemistry, petrogenesis, geodynamics. Russian Geology and Geophysics 2008, 49:254-271. 90. Safonova I.Yu., Utsunomiya A., Kojima S., Nakae S., Tomurtogoo O., Filippov A.N., Koizumi K. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research 2009, 16:587-608. 91. Safonova I.Yu., Buslov M.M., Simonov V.A., Izokh A.E., Komiya T., Kurganskaya E.V., Ohno T. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun accretionary complex of Gorny Altai (southwestern Siberia). Russian Geology and Geophysics 2011, 52:421-442. 92. Safonova I.Yu., Sennikov N.V., Komiya T., Bychkova Y.V., Kurganskaya E.V. Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. Journal of Asian Earth Sciences 2011, 42:191-207. 93. Safonova I.Yu., Simonov V.A., Obut O.T., Kurganskaya E.V., Romer R., Seltmann R. Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. Journal of Asian Earth Sciences 2012, 49:20-39. 94. Safonova I., Kojima S., Nakae S., Romer R., Seltmann R., Sano H., Onoue T. Oceanic island basalts in accretionary complexes of SW Japan: tectonic and petrogenetic implications. Journal of Asian Earth Sciences 2015, 10.1016/j.jseaes.2014.09.015. 95. Safonova I., Litasov K., Maruyama S. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers 2015, 6:679-685. 96. Saito T., Okada Y., Fujisaki W., Sawaki Y., Sakata S., Dohm J., Maruyama S., Hirata T. Accreted Kula plate fragment at 94 Ma in the Yokonami-melange, Shimanto-belt, Shikoku, Japan. Tectonophysics 2014, 623:136-146. 97. Sano H. Permian oceanic-rocks of Mino terrane, central Japan, part I. Chert facies. Journal of the Geological Society of Japan 1988, 94:697-709. 98. Sano H. Impact of long-term climate change and sea-level fluctuation on Mississippian to Permian mid-oceanic atoll sedimentation (Akiyoshi Limestone Group, Japan). Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 236:169-189. 99. Sano H., Kojima S. Carboniferous to Jurassic oceanic rocks of Mino-Tamba-Ashio terrane, southwest Japan. Memories of the Geological Society of Japan 2000, 55:123-144. (in Japanese with English abstract). 100. Sano H., Iijima Y., Hattori H. Stratigraphy of the Paleozoic rocks in the Akiyoshi Terrane of the central Chugoku Massif. Journal of the Geological Society of Japan 1987, 93:865-880. (in Japanese with English abstract). 101. Sano S., Hayasaka Y., Tazaki K. Geochemical characteristics of Carboniferous greenstones in the inner zone of Southwest Japan. Island Arc 2000, 9:81-96. 102. Santosh M. A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. Journal of Geodynamics 2010, 50:116-133. 103. Sekine T., Aramaki S. Physical conditions of felsic magma constrained by experimentally determined phase relaitons. Geochemical journal 1992, 26:279-290. 104. Snow C. A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: moving beyond binary and ternary plots. Journal of Geophysical Research 2006, 111:B06206. 105. Strasser M., Moore G.F., Kimura G., Kitamura Y., Kopf A.J., Lallemant S., Park J.-O., Screaton E.J., Su X., Underwood M.B., Zhao X. Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience 2009, 2:648-652. 106. Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Special Publication 1989, 42:313-345. A.D. Saunders, M.J. Norry (Eds.). 107. Geology and Paleontology of the Shimanto Belt 1980, 227-234. Rinyakosaikai Press, Kochi. A. Taira, M. Tashimo (Eds.). 108. Taira A., Katto J., Tahiro M., Okamura M., Kodama K. The Shimanto belt in Shikoku, Japan: evolution of Cretaceous to Miocene accretionary prism. Modern Geology 1988, 12:5-46. 109. Taira A., Byrne T., Ashi J. Photographic Atlas of an Accretionary Prism 1992, Springer, Berlin. 110. Tatsumi Y., Shinjoe H., Ishizuka H., Sager W.W., Klaus A. Geochemical evidence for a mid-Cretaceous superplume. Geology 1998, 26:151-154. 111. Tatsumi Y., Kani T., Ishizuka H., Maruyama S., Nishimura Yu. Activation of Pacific mantle plumes during the Carboniferous: evidence from accretionary complexes in southwest Japan. Geology 2000, 28:580-582. 112. Tazaki K., Sano S., Kagami H., Nishimura Y. Origin of the Taishaku greenstones as deduced from isotopic compositions of Nd and Sr. Memoirs of the Geological Society of Japan 1989, 33:69-80. 113. Tejada M.L.G., Mahoney J.J., Duncan R.A., Hawkins M.P. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, Southern Margin of Ontong Java Plateau. Journal of Petrology 1996, 37:361-394. 114. Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions. Oceanic Basalts 1991, 148-173. Blachie and Sons Ltd., Glasgow. P.A. Floyd (Ed.). 115. Thompson R.N., Morrison M.A., Mattey D.P., Dickin A.P., Moorbath S. An assessment of the Th-Hf-Ta diagram as a discriminant for tectonomagmatic classification and in the detection of crustal contamination of magmas. Earth and Planetary Science Letters 1980, 50:1-10. 116. Tilley C.E. Occurrence of hypersthene in Hawaiian basalts. Geological Magazine 1961, 98:257-260. 117. Uchio Y., Isozaki Y., Ota T., Utsunomiya A., Buslov M.M., Maruyama S. The oldest mid-oceanic carbonate buildup complex: setting and lithofacies of the Vendian (Neoproterozoic) Baratal limestone in the Gorny Altai Mountains, Siberia. Proceedings of Japan Academy 2004, 80B:422-428. 118. Ueda H., Miyashita S. Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. The Island Arc 2005, 14:582-598. 119. Uesugi J., Arai S. The Shiokawa peridotite mass in the Mikabu belt, central Japan, as a cumulate from intra-plate tholeiite. Memoirs of the Geological Society of Japan 1999, 52:229-242. (in Japanese with English abstract). 120. Verma S.P., Guevara M., Agrawal S. Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science 2006, 115:485-528. 121. Vermeesch P. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta 2006, 70:1839-1848. 122. Vlaar N.J., van Keken P.E., van den Berg A.P. Cooling of the Earth in the Archaean. Earth and Planetary Science Letters 1994, 121:1-18. 123. Volkova N.I., Budanov V.I. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: seamount volcanism and accretionary tectonics. Lithos 1999, 47:201-216. 124. Volkova N.I., Stupakov S.I., Babin G.A., Rudnev S.N., Mongush A.A. Mobility of Trace Elements during Subduction Metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan. Geochemistry International 2009, 47:380-392. 125. Wakita, K., 1984. Geology of the Hachiman district. Quadrangle Series, scale 1:50,000. Geological Survey of Japan, 89 p. (in Japanese with English abstract). 126. Wakita K. Melanges of the Mino terrane. Memoir of Geological Society of Japan 2000, 55:145-163. 127. Wakita K., Metcalfe I. Ocean plate stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences 2005, 24:670-702. 128. Wakita K. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan. Tectonophysics 2012, 568-569:74-85. 129. Wilson M. Igneous Petrogenesis 1989, Chapmann & Hall, London, (433 pp.). 130. Winchester J.A., Floyd P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 1977, 20:325-343. 131. Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 1980, 50:11-30. 132. Wood D.A., Joron J.L., Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 1979, 45:326-336. 133. Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sedimentary Geology 1987, 52:65-108. 134. Yamato-Omine Research Group Paleozoic and Mesozoic systems in central Kii mountains. Excursion Guidebook. Chidanken, Osaka 1981, (in Japanese). 135. Yanai S., Aoki K., Akahori Y. Opening of Japan Sea and major tectonic lines of Japan: MTL, TTL and Fossa Magna. Journal of Geography (Chigaku Zasshi) 2010, 119:1079-1124. 136. Yao A., Matsuda T., Isozaki Y. Triassic and Jurassic radiolarians from the Inuyama Area, Central Japan. Journal of Geoscience 1980, 23:135-154. 137. Yoder H.S., Tilley C.E. Origin of basalt magmas: an experimental study of natural and synthetic rock system. Journal of Petrology 1962, 3:342-532. 138. Zanchetta S., Berra F., Zanchi A., Bergomi M., Caridroit M., Nicora A., Heidarzadeh G. The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Research 2013, 24:1237-1266. 139. Zhai Q.G., Jahn B.M., Wang J., Su L., Mo X.X., Wang K.L., Tang S.H., Lee H.Y. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos 2013, 168-169:186-199. 140. Zhang Z., Zhou G., Kusky T.M., Yan S., Chen B., Zhao L. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research 2009, 16:201-215. 141. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Geology of the USSR: a plate tectonic synthesis. AGU Geodynamic Series 1990, 21.