Инд. авторы: Mashino I., Murakami M., Ohtani E.
Заглавие: Sound velocities of δ-alooh up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle
Библ. ссылка: Mashino I., Murakami M., Ohtani E. Sound velocities of δ-alooh up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle // Journal of Geophysical Research: Solid Earth. - 2016. - Vol.121. - Iss. 2. - P.595-609. - ISSN 2169-9313. - EISSN 2169-9356.
Внешние системы: DOI: 10.1002/2015JB012477; РИНЦ: 26851884; SCOPUS: 2-s2.0-84958259482; WoS: 000373084400010;
Реферат: eng: Recent studies show that δ-AlOOH is stable up to the base of the mantle. This phase is, therefore, a possible carrier and host of water in the deep mantle. To uncover the physical properties of δ-AlOOH under deep mantle pressure conditions, we have conducted high-pressure acoustic wave velocity measurements of δ-AlOOH by using Brillouin spectroscopy combined with high-pressure Raman spectroscopic measurements in a diamond anvil cell up to pressures of 134 GPa. There is a precipitous increase by ∼14% in the acoustic velocities of δ-AlOOH from 6 to 15 GPa, which suggests that pressure-induced O-H bond symmetrization occurs in this pressure range. The best fit values for the high-pressure form of δ-AlOOH of K0 = 190 (2) (GPa), G0 = 160.0 (9) (GPa), (∂K/∂P)0 = K0′ = 3.7 (1), and (∂G/∂P)0 = G0′ = 1.32 (1) indicate that δ-AlOOH has a 20-30% higher VS value compared to those of the major constituent minerals in the mantle transition zone, such as wadsleyite, ringwoodite, and majorite. On the other hand, the VS of δ-AlOOH is ∼7% lower than that of Mg-bridgmanite under lowermost mantle pressure conditions because of the significantly lower value of the pressure derivative of the shear modulus. By comparing our results with seismic observations, we can infer that δ-AlOOH could be one of the potential causes of a positive VS anomaly observed at ∼600 km depth beneath the Korean peninsula and a negative VS jump near 2800 km depth near the northern margin of the large low-shear-velocity province beneath the Pacific.
Ключевые слова: Subducting slab; Sound velocity; high pressure; Brillouin spectroscopy; δ-AlOOH;
Издано: 2016
Физ. характеристика: с.595-609
Цитирование: 1. Andrault, D., R. J. Angel, J. L. Mosenfelder, and, T. Le Bihan, (2003), Equation of state of stishovite to lower mantle pressures, Am. Mineral., 88, 301-307, doi: 10.2138/am-2003-2-307. 2. Avants, M., T. Lay, S. A. Russell, and, E. J. Garnero, (2006), Shear-velocity variation within the D region beneath the Central Pacific, J. Geophys. Res., 111, B05305, doi: 10.1029/2004JB003270. 3. Dewaele, A., P. Loubeyre, and, M. Mezouar, (2004), Equations of state of six metals above 94 GPa, Phys. Rev. B, 70, 094112, doi: 10.1103/PhysRevB.70.094112. 4. Dewey, J. F., and, J. M. Bird, (1970), Mountain belts and the new global tectonics, J. Geophys. Res., 75, 2625-2646, doi: 10.1029/JB075i014p02625. 5. Divins, D. L., (2003), Total sediment thickness of the world's oceans and marginal seas NOAA National Geophysical Data Center, Boulder, Colo. [Available at http://www.ngdc.noaa.gov/mgg/sedthick/.] 6. Fei, Y., L. Zhang, A. Corgne, H. Watson, A. Ricolleau, Y. Meng, and, V. Prakapenka, (2007), Spin transition and equations of state of (Mg, Fe)O solid solutions, Geophys. Res. Lett., 34, L17307, doi: 10.1029/2007GL030712. 7. Fiquet, G., A. Dewaele, D. Andrault, M. Kunz, and, D. Haüsermann, (1998), P-V-T equation of state of MgSiO3 perovskite, Phys. Earth Planet. Inter., 105, 21-31, doi: 10.1073/pnas.0609013104. 8. Fukao, Y., M. Obayashi, T. Nakakuki, and Deep Slab Project Group (2009), Stagnant slab: A review, Annu. Rev. Earth Planet. Sci., 37, 19-46, doi: 10.1146/annurev.earth.36.031207.124224. 9. Gwanmesia, G. D., G. Chen, and, R. C. Liebermann, (1998), Sound velocities in MgSiO3-garnet to 8 GPa, Geophys. Res. Lett., 25, 4553-4556, doi: 10.1029/1998GL900189. 10. Gwanmesia, G. D., Z. Jianzhong, K. Darling, J. Kung, B. Li, L. Wang, D. Neuville, and, R. C. Liebermann, (2006), Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9 GPa and 1000 C, Phys. Earth Planet. Inter., 155, 179-190, doi: 10.1016/j.pepi.2005.10.008. 11. Hilde, T. W. C., S. Uyeda, and, L. Kroenke, (1977), Evolution of the western Pacific and its margin, Tectonophysics, 38, 145-165. 12. Hirose, K., N. Takafuji, N. Sata, and, Y. Ohishi, (2005), Phase transition and density of subducted MORB crust in the lower mantle, Earth Planet. Sci. Lett., 237, 239-251, doi: 10.1016/j.epsl.2005.06.035. 13. Irifune, T., (1994), Absence of an aluminous phase in the upper part of the Earth's lower mantle, Nature, 370, 131-133, doi: 10.1038/370131a0. 14. Ishii, M., and, M. Tromp, (2001), Even-degree lateral variations in the Earth's mantle constrained by free oscillations and the free-air gravity anomaly, Geophys. J. Int., 145, 77-96, doi: 10.1111/j.1365-246X.2001.00385.x. 15. Jacobsen, S. D., (2006), Effect of water on the equation of state of nominally anhydrous minerals, Rev. Mineral. Geochem., 62, 321-342, doi: 10.2138/rmg.2006.62.14. 16. Jiang, F., J. Majzlan, S. Speziale, D. He, and, T. S. Duffy, (2008), Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering, Phys. Earth Planet. Inter., 170, 221-228, doi: 10.1016/j.pepi.2008.05.011. 17. Jiang, F., G. D. Gwanmesia, T. I. Dyuzheva, and, T. S. Duffy, (2009), Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering, Phys. Earth Planet. Inter., 172, 235-240, doi: 10.1016/j.pepi.2008.09.017. 18. Karato, S., and, B. Karki, (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21,771-21,783, doi: 10.1029/2001JB000214. 19. Karki, B. B., L. Stixrude, and, J. Crain, (1997), Ab initio elasticity of three high-pressure polymorphs of silica, Geophys. Res. Lett., 24, 3269-3272, doi: 10.1029/97GL53196. 20. Kawai, K., and, T. Tsuchiya, (2013), First principles study on the high-pressure phase transition and elasticity of KAISi3O8 hollandite, Am. Mineral., 98 (1), 207-218, doi: 10.2138/am.2013.4077. 21. Kudo, Y., K. Hirose, M. Murakami, Y. Asahara, H. Ozawa, Y. Ohishi, and, N. Hirao, (2012), Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies, Earth Planet. Sci. Lett., 329-350, 1-7, doi: 10.1016/j.epsl.2012.06.040. 22. Kuribayashi, T., A. Sano-Furukawa, and, T. Nagase, (2014), Observation of pressure- induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method, Phys. Chem. Miner., 4, 303-312, doi: 10.1007/s00269-013-0649-6. 23. Lay, T., and, E. J. Garnero, (2004), Core-mantle boundary structures and processes, in The State of the Planet: Frontiers and Challenges in Geophysics, Geophys. Monogr. Ser., vol. 150, edited by, R. S. J. Sparks, and, C. J. Hawkesworth, IUGG Volume 19, 25-41, AGU, Washington, DC 24. Lay, T., J. Hernlund, E. J. Garnero, and, M. S. Thorne, (2006), A post-perovskite lens and D heat flux beneath the central Pacific, Science, 314, 1272-1276, doi: 10.1126/science.1133280. 25. Li, B. S., S. M. Rigden, and, R. C. Liebermann, (1996), Elasticity of stishovite at high pressure, Phys. Earth Planet. Inter., 96, 113-127, doi: 10.1016/0031-9201(96)03144-5. 26. Lin, J. F., E. Gregoryanz, V. Struzhkin, M. Somayazulu, H. K. Mao, and, R. J. Hemley, (2005), Melting behaviour of H2O ice at high pressures and temperatures, Geophys. Res. Lett., 32, L11306, doi: 10.1029/2005GL022499. 27. Litasov, K., and, E. Ohtani, (2005), Phase relations in hydrous MORB at 18-28 GPa: Implications for heterogeneity of the lower mantle, Phys. Earth Planet. Inter., 150, 239-263, doi: 10.1016/j.pepi.2004.10.010. 28. Liu, W., J. Kung, B. Li, N. Nishiyama, and, Y. Wang, (2009), Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K, Phys. Earth Planet. Inter., 174, 98-104, doi: 10.1029/2005GL023453. 29. Lundin, S., K. Catalli, J. Santillán, S.-H. Shim, V. B. Prakapenka, M. Kunz, and, Y. Meng, (2008), Effect of Fe on the equation of state of mantle silicate perovsktie over 1 Mbar, Phys. Earth Planet. Inter., 168, 97-102, doi: 10.1016/j.pepi.2008.05.002. 30. Mao, H. K., R. J. Hemley, Y. Fei, J. F. Shu, L. C. Chen, A. P. Jephcoat, and, Y. Wu, (1991), Effect of pressure, temperature, and composition on lattice parameters and density of (Fe, Mg)SiO3 perovskite, J. Geophys. Res., 96, 8069-8079, doi: 10.1029/91JB00176. 31. Mao, Z., S. D. Jacobsen, D. J. Frost, C. A. McCammon, E. H. Hauri, and, T. S. Duffy, (2011), Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa, Am. Mineral., 96, 1606-1612, doi: 10.2138/am.2011.3807. 32. Mao, Z., J.-F. Lin, S. D. Jacobsen, T. S. Duffy, Y.-Y. Chang, J. R. Smyth, D. J. Frost, E. H. Hauri, and, V. B. Prakapenka, (2012), Sound velocities of hydrous ringwoodite to 16 GPa and 673 K, Earth Planet. Sci. Lett., 331-332, 112-119, doi: 10.1016/j.epsl.2012.03.001. 33. Mei, S., and, D. L. Kohlstedt, (2000), Influence of water on plastic deformation of olivine aggregates, J. Geophys. Res., 105, 21, 457-21, 469, doi: 10.1029/2000JB900180. 34. Murakami, M., (2015), Elastic wave velocity measurement under extreme pressures using Brillouin scattering spectroscopy, Rev. High Pressure Sci. Technol., 25, 20-26. 35. Murakami, M., and, J. D. Bass, (2011), Evidence of denser MgSiO3 glass above 133 GPa and implications for remnants of ultradense silicate melt from a deep magma ocean, Proc. Natl. Acad. Sci. U.S.A., 108, 17,286-17,289, doi: 10.1073/pnas.1109748108. 36. Murakami, M., S. V. Sinogeikin, H. Hellwig, J. D. Bass, and, J. Li, (2007), Sound velocity of MgSiO3 perovskite to Mbar pressure, Earth Planet. Sci. Lett., 256, 47-54, doi: 10.1016/j.epsl.2007.01.011. 37. Murakami, M., S. V. Sinogeikin, K. Litasov, E. Ohtani, and, J. D. Bass, (2008), Single-crystal elasticity of iron-bearing majorite to 26 GPa: Implications for seismic velocity structure of the mantle transition zone, Earth Planet. Sci. Lett., 274, 339-345, doi: 10.1016/j.epsl.2008.07.045. 38. Murakami, M., Y. Ohishi, N. Hirao, and, K. Hirose, (2012), A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data, Nature, 485, 90-95, doi: 10.1038/nature11004. 39. Nishi, M., T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara, K. Fujino, and, Y. Higo, (2014), Stability of hydrous silicate at high pressures and water transport to the deep lower mantle, Nat. Geosci., 7, 224-227, doi: 10.1038/ngeo2074. 40. Ohira, I., E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and, M. Nishijima, (2014), Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle, Earth Planet. Sci. Lett., 401, 12-17, doi: 10.1016/j.epsl.2014.05.059. 41. Ohta, K., K. Hirose, T. Lay, N. Sata, and, Y. Ohishi, (2008), Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary, Earth Planet. Sci. Lett., 267, 107-117, doi: 10.1016/j.epsl.2007.11.037. 42. Ohtani, E., (2005), Water in the mantle, Elements, 1 (1), 25-30, doi: 10.2113/gselements.1.1.25. 43. Ohtani, E., (2006), Recent progress in experimental mineral physics: Phase relations of hydrous systems and the role of water in slab dynamics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophys. Monogr. Ser., vol. 160, edited by, R. D. van der Hilst, et al., pp. 321-334, AGU, Washington, DC 44. Ohtani, E., K. Litasov, A. Suzuki, and, T. Kondo, (2001), Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep mantle, Geophys. Res. Lett., 28, 3991-3993, doi: 10.1029/2001GL013397. 45. Ohtani, E., Y. Amaike, S. Kamada, T. Sakamaki, and, N. Hirao, (2014), Stability of hydrous phase H MgSiO4H2 under lower mantle conditions, Geophys. Res. Lett., 41, 8283-8287, doi: 10.1002/2014GL061690. 46. Ono, S., (1998), Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones, J. Geophys. Res., 103, 18,253-18,267, doi: 10.1029/98JB01351. 47. Rapp, R. P., T. Irifune, N. Shimizu, N. Nishiyama, M. D. Norman, and, T. Inoue, (2008), Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle, Earth Planet. Sci. Lett., 271, 14-23, doi: 10.1016/j.epsl.2008.02.028. 48. Ricolleau, A., J. P. Perrillat, G. Fiquet, I. Daniel, J. Matas, A. Addad, N. Menguy, H. Cardon, M. Mezouar, and, N. Guignot, (2010), Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth's lower mantle, J. Geophys. Res., 115, B08202, doi: 10.1029/2009JB006709. 49. Sano, A., E. Ohtani, T. Kubo, and, K. Funakoshi, (2004), In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH, J. Phys. Chem. Solids, 65, 1547-1554, doi: 10.1016/j.jpcs.2003.12.015. 50. Sano, A., E. Ohtani, T. Kondo, N. Hirao, T. Sakai, N. Sata, Y. Ohishi, and, T. Kikegawa, (2008), Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary, Geophys. Res. Lett., 35, L03303, doi: 10.1029/2007GL031718. 51. Sano-Furukawa, A., H. Kagi, T. Nagai, S. Nakano, S. Fukura, D. Ushijima, R. Iizuka, E. Ohtani, and, T. Yagi, (2009), Change in compressibility of δ-AlOOH and δ-AlOOD at high pressure: A study of isotope effect and hydrogen-bond symmetrization, Am. Mineral., 94, 1255-1261, doi: 10.2138/am.2009.3109. 52. Schwager, B., L. Chudinovskikh, A. Gavriliuk, and, R. Boehler, (2004), Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell, J. Phys.:Condens. Matter, 16, S1177-S1179, doi: 10.1088/0953-8984/16/14/028. 53. Sinogeikin, S. V., and, J. D. Bass, (2000), Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond anvil cell, Phys. Earth Planet. Inter., 120, 43-62, doi: 10.1016/S0031-9201(00)00143-6. 54. Sinogeikin, S. V., and, Bass, J. D., (2002), Elasticity of majorite and a majorite-pyrope solid solution to high pressure: Implications for the transition zone, Geophys. Res. Lett., 29 (2), 1017, doi: 10.1029/2001GL013937. 55. Sinogeikin, S. V., J. D. Bass, and, T. Katsura, (2003), Single-crystal elasticity of ringwoodite to high pressures and high temperatures: Implications for 520 km seismic discontinuity, Phys. Earth Planet. Inter., 136, 41-66, doi: 10.1016/S0031-9201(03)00022-0. 56. Stixrude, L., and, C. Lithgow-Bertelloni, (2005), Thermodynamics of mantle minerals-I Physical properties, Geophys. J. Int., 162, 610-632, doi: 10.1111/j.1365-246X.2005.02642.x. 57. Suzuki, A., E. Ohtani, and, T. Kamada, (2000), A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000°C, Phys. Chem. Miner., 27, 689-693, doi: 10.1007/s002690000120. 58. Tackley, P. J., (1998), Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D?, in The Core-Mantle Boundary Region, Geodyn. Ser., vol. 28, edited by, M. Gurnis, et al., pp. 231-253, AGU, Washington, DC 59. Tsuchiya, J., (2013), First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle, Geophys. Res. Lett., 40, 4570-4573, doi: 10.1002/grl.50875. 60. Tsuchiya, J., and, T. Tsuchiya, (2009), Elastic properties of δ-AlOOH under pressure: First principles investigation, Phys. Earth Planet. Inter., 174, 122-127, doi: 10.1016/j.pepi.2009.01.008. 61. Tsuchiya, J., T. Tsuchiya, and, R. M. Wentzcovitch, (2008), Vibrational properties of δ-AlOOH under pressure, Am. Mineral., 93, 477-482, doi: 10.2138/am.2008.2627. 62. Vanpeteghem, C. B., A. Sano, K. Komatsu, E. Ohtani, and, A. Suzuki, (2007), Neutron diffraction study of aluminous hydroxide δ-AlOOD, Phys. Chem. Miner., 34, 657-661, doi: 10.1007/s00269-007-0180-8. 63. Walter, M. J., A. R. Thomson, W. Wang, O. T. Lord, J. Ross, S. C. McMahon, M. A. Baron, E. Melekhova, A. K. Kleppe, and, S. C. Kohn, (2015), The stability of hydrous silicates in Earth's lower mantle: Experimental constraints from the systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O, Chem. Geol., 418, 16-29, doi: 10.1016/j.chemgeo.2015.05.001. 64. Wei, D., and, T. Seno, (1998), Determination of the Amurian plate motion, in Mantle Dynamics and Plate Interactions in East Asia, Geodyn. Ser., vol. 27, edited by, M. F. J. Flower, et al., pp. 337-346, AGU, Washington, DC 65. Wood, B. J., (2000), Phase transformations and partitioning relations in peridotite under lower mantle conditions, Earth Planet. Sci. Lett., 174, 341-354, doi: 10.1016/S0012-821X(99)00273-3. 66. Xue, X., and, M. Kanzaki, (2007), High-pressure δ-Al(OH)3 and δ-AlOOH phases and isostructural hydroxides/oxyhydroxides: New structural insights from high-resolution 1H and 27Al NMR, J. Phys. Chem. B, 111, 13,156-13,166, doi: 10.1021/jp073968r. 67. Zhang, R., Q. Wu, Y. Li, and, B. Romanowicz, (2012), Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions, J. Geophys. Res., 117, B09315, doi: 10.1029/2011JB008900.