Цитирование: | 1. Arevalo, R.D. and McDonough, W.F., Chemical variations and regional diversity observed in MORB, Chemical Geology, 2010, vol. 271, pp. 70–85.
2. Bennett, V.C., Norman, M.D., and Garcia, M.O., Rhenium and platinum-group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume, Earth Planet. Sci. Lett., 2000, vol. 183, pp. 513–526.
3. Bézos, A., Lorand, J.-P., Humler, E., et al., Platinumgroup element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans, Geochim. et Cosmochim. Acta, 2005, vol. 69, pp. 2613–2627.
4. Bindeman, I.N., Ponomareva, V.V., Bailey, J.C., et al., Kamchatka Peninsula: a province with high-d18O magma sources and large scale 18O/16O depletion of the upper crust, Geochim. et Cosmochim. Acta, 2004, vol. 68, pp. 841–865.
5. Bindeman, I.N., Leonov, V.L., Izbekov, P.E., et al., Largevolume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic and geochemical characteristics of major pre-Holocene caldera-forming eruptions, J. Volcanol. and Geotherm. Res., 2010, vol. 189, pp. 57–80.
6. Churikova, T., Dorendorf, F., and Worner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrology, 2001, vol. 42, no. 8, pp. 1567–1593.
7. Crocket, J.H., Platinum-group elements in basalts from Maui, Hawaii: low abundances in alkali basalts, The Canadian Mineralogist, 2002, vol. 40, pp. 595–609.
8. Dale, C.W., Luguet, A., Macpherson, C.G., et al., Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity, Chemical Geology, 2008, vol. 248, Issues 3–4, pp. 213–238.
9. Dale, C.W., Burton, K.W., Pearson, D.G., et al., Highly siderophile element behavior accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain, Geochim. et Cosmochim. Acta, 2009, vol. 73, pp. 1394–1416.
10. Dale, C.W., Macpherson, C.G., Pearson, D.G., et al., Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source, Geochim. et Cosmochim. Acta, 2012, vol. 89, pp. 202–225.
11. Day, J.M.D., Hotspot volcanism and highly siderophile elements, Chemical Geology, 2013, vol. 341, pp. 50–74.
12. Dorendorf, F., Wiechert, U., and Woerner, G., Hydrated sub-arc mantle: a source for Kluchevskoy volcano, Kamchatka, Russia, Earth Planet. Sci. Lett., 2000, vol. 175, pp. 69–86.
13. Dosseto, A., Bourdon, B., Joron, J.-L., et al., U–Th–Pa–Ra study of the Kamchatka arc: new constraints on the genesis of arc lavas, Geochim. et Cosmochim. Acta, 2003, vol. 67, no. 15, pp. 2857–2877.
14. Duggen, S., Portnyagin, M., Baker, J., et al., Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting, Geochim. et Cosmochim. Acta, 2007, vol. 71, pp. 452–480.
15. Fedorov, B.V., Volynets, O.N., and Popov, V.S., Sulfide microinslusions in acid and intermediate volcanic rocks at the Kuril–Kamchatka island arc, Petrologiya, 1996, vol. 4, no. 2, pp. 217–224.
16. Flerov, G.B., Perepelov, A.B., Puzankov, M.Yu., Koloskov, A.V., Filosofova, T.M., and Shcherbakov, Yu.D., The space–time relationships between volcanic associations of different alkalinities: The Belogolovskii Massif in Kamchatka’s Sredinnyi Range. Part 1. The geology, mineralogy, and petrology of volcanic rocks, J. Volcanol. Seismol., 2014, vol. 8, no. 3, pp. 135–155.
17. Gorbatov, A.S., Widiyantoro, S., Fukao, Y., et al., Signature of remnant slabs in the North Pacific from P-wave tomography, Geophysical Journal International, 2000, vol. 142, pp. 27–36.
18. Galer, S.J.G., Optimal double and triple spiking for high precision lead isotopic measurement, Chemical Geology, 1999, vol. 157, pp. 255–274.
19. Ivanov, A.V., Perepelov, A.B., Palesskii, S.V., et al., First data on the distribution of the platinum group elements (Ir, Os, Ru, Pt, Pd) and Re in island arc basalts of Kamchatka, Dokl. Akad. Nauk, 2008, vol. 420, no. 1, pp. 92–96.
20. Iwamori, H. and Nakamura, H., Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics, Gondwana Research, 2015, vol. 27, no. 3, pp. 1131–1152.
21. Jicha, B.R., Singer, B.S., Brophy, J.G., et al., Variable impact of the subducted slab on Aleutian island arc magma sources: evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances, J. Petrology, 2004, vol. 45, pp. 1845–1875.
22. Kersting, A.B. and Arculus, R.J., Pb systematics of Klyuchevskoy Volcano, Kamchatka, and North Pacific sediments: implications for magma genesis and sediment recycling in the Kamchatkan arc, Earth Planet. Sci. Lett., 1995, vol. 136, pp. 133–148.
23. Kelemen, P.B., Yogodzinski, G.M., and Scholl, D.W., Along strike variation in the Aleutian Island arc: Genesis of high Mg# andesite and implications for continental crust, in Inside the Subduction Factory, Eiler, J., Ed., American Geophysical Union Monograph, 2003, vol. 138, pp. 1–54.
24. Kepezhinskas, P., McDermott, F., Defant, M.J., et al., Trace element and Sr–Nd–Pb isotopic constraints on a three component model of Kamchatka arc petrogenesis, Geochim. et Cosmochim. Acta, 1997, vol. 61, pp. 577–600.
25. Koloskov, A.V., Flerov, G.B., Perepelov, A.B., Melekestsev, I.V., Puzankov, M.Yu., and Filosofova, T.M., Evolution stages and petrology of the Kekuknai volcanic massif as reflecting the magmatism in backarc zone of Kuril–Kamchatka island arc system. Part 1. Geological position and geochemistry of volcanic rocks, J. Volcanol. Seismol., 2011, vol. 5, no. 5, pp. 312–334.
26. Koloskov, A.V., Flerov, G.B., Perepelov, A.B., Melekestsev, I.V., Puzankov, M.Yu., and Filosofova, T.M., Evolution stages and petrology of the Kekuknai volcanic massif reflecting the magmatism in the backarc zone of the Kuril–Kamchatka island arc system. Part II.Petrologic and mineralogical features, petrogenesis model, J. Volcanol. Seismol., 2013, vol. 7, no. 2, pp. 145–169.
27. Koz’menko, O.A., Palesskii, S.V., Nikolaeva, I.V., et al., An improved technique for chemical preparation of geological samples in Carius tubes for determining platinum elements and rhenium, Analitika i Kontrol’, 2011, vol. 15, no. 4, pp. 378–385.
28. Krogh, T., A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotope age determinations, Geochim. et Cosmochim. Acta, 1973, vol. 37, pp. 485–494.
29. Lee, C.-T.A., Wasserburg, G.J., and Kyte, F.T., Platinumgroup elements (PGE) and rhenium in marine sediments across the Cretaceous–Tertiary boundary: Constraints on Re-PGE transport in the marine environment, Geochim. et Cosmochim. Acta, 2003, vol. 67, no. 4, pp. 655–670.
30. Martynov, Yu.A., Kimura, D.I., Martynov, A.Yu., et al., The presence of an Indian MORB mantle beneath the Kuril island arc: Isotope studies of mafic lavas on Kunashir island, Petrologiya, 2012, vol. 20, no. 1, pp. 102–110.
31. Mungall, J.E. and Brenan, J.M., Partitioning of platinumgroup elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements, Geochim. et Cosmochim. Acta, 2014, vol. 125, pp. 265–289.
32. Palesskii, S.V., Nikolaeva, I.V., Koz’menko, O.A., et al., The determination of platinum group elements and rhenium in standard geological specimens by isotope dilution with mass spectrometry ending, Zhurnal Analiticheskoi Khimii, 2009, vol. 64, no. 3, pp. 287–291.
33. Perepelov, A.B., The Cenozoic Magmatism of Kamchatka during Changes of Geodynamic Setting, Extended Abstract of Doctoral (Geol.–Mineral.) Dissertation, Irkutsk, 2014, p. 41.
34. Peucker-Ehrenbrink, B., Bach, W., Hart, S., et al., Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP Sites 504 and 417/418, Geochemistry, Geophysics, Geosystems, 2003, vol. 4, no. 7. doi 10.1029/2002GC000414
35. Plank, T. and Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle, Chemical Geology, 1998, vol. 145(3–4), pp. 325–394.
36. Pin, C. and Zalduegui, J.F.S., Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks, Analyt. Chem. Acta, 1997, vol. 339, pp. 79–89.
37. Portnyagin, M., Hoernle, K., Avdeiko, G., et al., Transition from arc to oceanic magmatism at the Kamchatka-Aleutian junction, Geology, 2005, vol. 33, no. 1, pp. 25–28.
38. Portnyagin, M., Hoernle, K., Plechov, P., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc, Earth and Planet. Sci. Lett., 2007, vol. 255, no. 1, pp. 53–69.
39. Regelous, M., Hofmann, A.W., Abouchami, W., et al., Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma, J. Petrol., 2003, vol. 44, pp. 113–140.
40. Rudge, J.F., Reynolds, B.C., and Bourdon, B., The double spike toolbox, Chemical Geology, 2009, vol. 265, pp. 420–431.
41. Salters, V.J.M. and Sachi-Kocher, A., An ancient metasomatic source for the Walvis Ridge basalts, Chemical Geology, 2010, vol. 273, no. 3–4, pp. 151–167.
42. Shcherbakov, Yu.D., The Geochemistry and Petrology of the Alkaline-Basalt–Trachyte–Comendite Series: The Sredinnyi Range, Kamchatka, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk, 2015.
43. Smirnova, E.V., Mysovskaya, I.N., Lozhkin, V.I., et al., The estimation of spectral noise when using an ICP AES technique with an ELEMENT2 magnetic sector: Determination of rare earth elements, in Vserossiiskaya konferentsiya “Analitika Rossii” (All-Russia conference “Analysis in Russia”), Moscow, 2004, pp. 157–158.
44. Stracke, A., Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle, Chemical geology, 2012, vol. 330–331, no. 10, pp. 274–299.
45. Sun, S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 313–345.
46. Tatsumi, Y., Kogiso, T., and Nohda, S., Formation of a third volcanic chain in Kamchatka: Generation of unusual subduction-related magmas, Contrib. Mineral. Petrol., 1995, vol. 120, pp. 117–128.
47. Turner, S., McDermott, F., Hawkesworth, C., et al., Useries study of lavas from Kamchatka and the Aleutian: Constraints on source compositions and melting processes, Contrib. Mineral. Petrol., 1998, vol. 133, pp. 217–234.
48. Volynets, O.N., Geochemical types, petrology and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system, International Geological Review, 1994, vol. 36, no. 4, pp. 373–405.
49. Volynets, O.N., Asavin, A.M., and Kogarko, L.N., Fractionation of trace elements in alkaline and subalkaline volcanic rocks: Kamchatka, Geokhimiya, 1990, no. 5, pp. 672–681.
50. Volynets, O.N., Koloskov, A.V., Vinogradov, V.I., et al., Isotope composition of strontium and oxygen of the Late Cenozoic K–Na alkaline basalts of the intraplate geochemical type, Kamchatka, Petrologiya, 1995, vol. 3, no. 2, pp. 207–213.
51. Volynets, O.N., Karpenko, S.F., Koloskov, A.V., et al., First data on the isotope composition of neodymium in Late Cenozoic K–Na alkaline basalts of Kamchatka, Dokl. Akad. Nauk, 1996, vol. 350, no. 2, pp. 239–241.
52. Volynets, O.N., Karpenko, S.F., Keu, R.U., and Gorring, M., The isotope composition of Late Neogene K–Na alkaline basaltoids in eastern Kamchatka: Signature of heterogeneity at the mantle source, Geokhimiya, 1997, no. 10, pp. 1005–1018.
53. Volynets, O.N., Babanskii, A.D., and Gol’tsman, Yu.V., Isotope and geochemical variations in lavas at the North Volcanic Cluster, Kamchatka in relation to subduction, Geokhimiya, 2000, no. 10, pp. 1–17.
54. Volynets, A., Churikova, T., Wörner, G., et al., Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back arc region: Implications for subduction geometry and slab history at the Pacific-Aleutian junction, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 659–687.
55. Yogodzinski, G.M., Rubenstone, J.L., Kay, S.M., et al., Magmatic and tectonic development of the Western Aleutians–an oceanic arc in a strike-slip setting, J. Geophys. Res., 1993, vol. 98, no. B7, pp. 11807–11834.
56. Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., et al., Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians, J. Petrology, 1994, vol. 35, pp. 163–204.
57. Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al., Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge, Geological Society of America Bulletin, 1995, vol. 107, pp. 505–519.
58. Zindler, A. and Hart, S., Chemical geodynamics, Ann. Rev. Earth Planet. Sci., 1986, vol. 14, pp. 493–571.
|